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ABSTRACT
With the development of offshore wind power toward deeper

seas, innovative installation methods for floating offshore wind
turbines (FOWTs) are urgently needed. A novel installation ap-
proach involves a specially designed catamaran that carries mul-
tiple preassemblies (tower, hub, and blades are mated onshore) to
the installation site. The approach separates the construction of
foundations and preassembled upper structures. Carrying multi-
ple preassemblies onboard shortens the transportation time, and
only one lifting operation shortens the offshore mating time. Due
to the complexity of the offshore environment, irregular rela-
tive motions occur between the preassemblies and the floating
foundation. Larger relative distances between the mating points
(lifted preassembly bottom center point and floating foundation
top center point) would increase the outcrossing rate during the
mating operation. Artificial neural networks are applied to pre-
dict the maximum and minimum relative motions between the
two mating points during the implementation of mating opera-
tions. The installation scheme is simulated in various sea states
using Sima, generating datasets for analysis. Statistical motion
data (mean value and low-order central moments) for the past
period are used as inputs to the neural network to obtain the
maximum and minimum relative motion for the coming period.
Simulation results show that the prediction model constructed by
the back propagation neural network can predict maximum and
minimum values of relative motions with acceptable accuracy.
The proposed algorithm enables the prediction of potential haz-
ards during the mating operation of the conceptual installation
method, facilitating informed decision-making by the crews.

Keywords: floating offshore wind turbine, artificial neural
network, relative motion

1. INTRODUTION
As offshore wind farms develop toward deeper seas, float-

ing offshore wind turbine (FOWT) structures have emerged as an

∗Corresponding author: zhengru.ren@sz.tsinghua.edu.cn

inevitable trend. Marine operation of the floating wind turbines
installation also has a series of challenges, such as reducing costs
and ensuring safety. Self-elevating vessels are typically equipped
with three or four legs, which can be inserted into the seabed.
After the legs are positioned, the hull can be lifted away from
the wave zone. The length of tension legs [1] limits the applica-
tion of the self-elevating vessels for the deep-water installation of
FOWTs. Wet towing is one of the most commonly used methods
for transporting FOWTs. However, wet towing has some dis-
advantages, such as its slow transport speed and low efficiency,
which limits its ability to adapt to long-distance transportation.
Hywind Scotland is a practical engineering project applying a
large semi-submersible vessel to lift a preassembly and trans-
port it to the installation site. Using the large crane to finish
the mating operation between the moored Spar foundation and
the preassembly. However, the engagement of the large crane
significantly increases the installation cost.

A conceptual tower-nacelle-rotor preassembly lifting method
proposed by the SFI MOVE [2, 3] uses the low-high lifting grip-
per to lift the preassembly, avoiding the use of large cranes. A
catamaran is used as the installation vessel to carry multiple
preassemblies to the installation site. The installation vessel is
equipped with sliding grippers to maintain the relative motions
in the horizontal plane between the installation and the moored
Spar foundation. A passive roller at the end tip of each sliding
gripper so that the Spar foundation can move in the 𝑧-direction.
A dynamic positioning system (DP) is also equipped to offset the
drifting motion of the vessel. The method is an innovative ap-
proach to avoid extremely weather-sensitive high lift operations.
It can widen the weather window for installation and reduce the
time consumed in transportation. However, it is at the conceptual
design stage and needs to be refined in all aspects. Jiang [3]
summarises three existing challenges in the tower-nacelle-rotor
preassembly lifting method, i.e., structural dynamics, hydrody-
namics properties of the two floating structures, and automatic
control demands for different stages. To further reduce the motion
responses, the small water-plane area twin hull vessel (SWATH)
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[4] can be used as an installation vessel to avoid resonance. Novel
gripper designs [5] are also proposed to reduce the effects of ex-
ternal loads. Heave compensation [6], dynamic position system,
and fender [7] can improve the system performance. The struc-
tural flexibility [8] of the crane is also considered in the dynamic
responses of the installation system.

Relative motions between the lifted preassembly and float-
ing foundations during installation influence the success of the
mating operation. Many practical issues, especially the relative
motions between the mating points (lifted preassembly bottom
center point and Spar top center point), need further study. Rel-
ative position and velocity of the mating points determine the
probability of outcrossing. The outcrossing is defined as rela-
tive motions between two mating points that exceed a set safe
operating boundary. While the relative motions between mating
points can be offset by an active heave compensation system and
simulated using software such as Sima or other existing codes,
substantial personal and property losses may occur in the event
of an accident. So it is essential to predict the relative motions
and make early warning based on the predicted results.

Based on the motion prediction research, it can be the base-
ment of control design and decision-making for marine opera-
tions (i.e., float-over installation, heavy lifting, aircraft landing,
and anti-roll). Most existing research can be divided into such
as physical prediction method [9–11] based on the combination
of the waves and vessel’s hydrodynamic characterisation, auto-
correlation function method [12], classic time series prediction
method [13], and intelligent prediction method. The autocorre-
lation function method is based on the vessel’s historical mo-
tions to predict future motions. Instantaneous autocorrelation
function method [14] using the short-time data measurements
is further developed to overcome the shortcoming of the short
prediction ability. Floating structures’ motions usually express
non-Gaussian features by suffering the non-Gaussian external
loads (i.e., wind and wave). Traditional motion prediction meth-
ods based on the linear theory have limited predictive effects.
Statistically based extreme value theory also seems to solve the
above prediction problem. However, it is difficult to migrate to
the implementation of offshore wind turbine installations. The
intelligent prediction method does not rely on experts in one field
so much and can be based directly on the data itself to realize
motion prediction. Artificial neural network (ANN) [15–18] al-
gorithm is one of the intelligent prediction methods, and it has
been proved to be an efficient technique in solving nonlinear mo-
tion prediction problem. It can rely on simulation-based offline
training to obtain the feedforward knowledge, which makes the
trained neural networks be used in the installation operation. The
progress in sensor technology has facilitated the monitoring of
vessel motions, thus contributing to the application of ANN in
relative motion prediction.

The significant contributions of this paper are predicting the
maximum and minimum values of relative motion between the
mating points to decrease the pitfalls of inaccurate weather fore-
casts. The specific details of motions are unimportant compared
to the maximum and minimum values in the mating operation.
The paper is organized as follows. In Section 2, the installation
system and the methodology are introduced. Section 3 explains

the simulation model setup and the workflow of the neural net-
work. Section 4 shows the simulation results of the relative
motion of the mating points under different sea states, and the
prediction effect based on the neural network is demonstrated.
The conclusions of the paper are summarized in Section 5.

2. METHODOLOGY
2.1 System description

This research focuses on a scenario (see Fig.1) in which the
foundation has been moored in the installation site, and some
lower grippers are used to maintain the relative motions between
the installation vessel and the foundation in the horizontal plane.
One of the preassemblies onboard is gripped and moved to the
stern of the installation vessel, waiting for release. No lowering
or lifting operations are performed on the preassembly at the
stern. The installation procedure of the proposed installation
concept has been described specifically in previous studies [3, 7].
Motion monitoring sensors are installed on the installation vessel
and Spar foundation to monitor the motion states. Instead of the
installation process details, short-term predictions of the mating
points’ relative motions are the main challenge studied in this
paper.

2.2 Description of relative motion
Global reference frame system {𝑛} are defined. The right-

hand body-fixed reference frame systems {𝑏} of the vessel and the
floating foundation are denoted by {𝑏1} and {𝑏2}, respectively.
The specific orientation of the coordinate axes is shown in Fig.1.
Origins of the body-fixed reference frame systems are set at the
sea surface.

The vessel and foundation are regarded as rigid bodies, and
the lifted preassembly and the preassemblies onboard are con-
sidered to be rigidly connected to the vessel. The motion of the
mating points can be got in the following relationship

𝑝𝑛𝑚,𝑏 = 𝑝𝑛𝑏 + 𝑅𝑛
𝑏𝑙

𝑏
𝑚, (1a)

𝑝̇𝑛𝑚,𝑏 = 𝑝̇𝑛𝑏 + 𝑅𝑛
𝑏𝑆(𝜔)𝑙

𝑏
𝑚, (1b)

where 𝑝𝑛
𝑏

and 𝑝𝑛
𝑚,𝑏

represent the positions of the origin of {𝑏}
and the mating point in {𝑛}, respectively. 𝑙𝑏𝑚 represent the relative
distance between the mating point to the origin of {𝑏}, 𝑅𝑛

𝑏
is the

rotation matrix, 𝑆(·) represents the vector cross-product calcu-
lation (i.e., 𝜔 × 𝑙𝑏𝑚=𝑆(𝜔)𝑙𝑏𝑚). Relative motions includes relative
displacement and relative velocity. The relative displacement
between the mating points 𝛿𝑑𝑝 can be expressed as

𝛿𝑑𝑝 = ∥𝑝𝑛𝑚1 ,𝑏1
− 𝑝𝑛𝑚2 ,𝑏2

∥2, (2)

where 𝑝𝑛
𝑚1 ,𝑏1

refers to the position of the lifted preassembly bot-
tom center point in {𝑛}, 𝑝𝑛

𝑚2 ,𝑏2
refers to the position of the Spar

top center point in {𝑛}. Moreover, 𝛿𝑑𝑝 represent relative velocity
and is the derivative of 𝛿𝑑𝑝 . Relative motions between mating
points can be further divided into relative motions in the horizon-
tal plane and the vertical plane, shown in Fig.2. The 𝑥-𝑧 plane
is chosen as the plane to focus on the pitch motion of the struc-
tures. Motions in different planes can reach maxima and minima
magnitudes at different moments. It is necessary to discuss the
motion performance of the mating points in different planes.
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Lifted preassembly bottom
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FIGURE 1: Overview of the research scenario and the mating points.
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(a) Horizontal plane.

Spar top

Preassembly bottom

𝑧

𝑥

𝜹𝒅𝒗

(b) Vertical plane.

FIGURE 2: Relative motions between mating points in different
planes.

2.3 Describe of central moment
The prediction of the floating structure’s motions in the ma-

rine environment is generally based on a statistical concept of a
stationary process in most studies. The assumption is made with-
out the necessity to state it. The central moment is a statistical
concept that can be used to obtain features of a set of data. Mean
value and the 𝑘-𝑡ℎ orders central moments are given by

𝜇 = 𝐸 (𝑋), (3a)

𝑀𝑘 = 𝐸 (𝑋 − 𝜇)𝑘 , (3b)

where 𝑋 denotes a variable, 𝑘 denotes the order, 𝜇 and 𝑀𝑘 denote
the mean value and the 𝑘-𝑡ℎ orders central moments, respectively.
In the present paper 𝑘 ∈ {1, 2, 3, 4}. It should be noted that the 𝑀1
is 0. Besides, 𝑀3 and 𝑀4 are skewness and kurtosis, respectively.
The skewness explains the amount and direction of the skew. The
kurtosis is used to describe the central peak. A higher value of
the kurtosis indicates a higher and sharper peak.

2.4 Artificial neural network
An artificial neural network consists of a number of inter-

connected neurons, and it is divided into the input layer, hidden

…
…

…
…

…
…

Input Layer Hidden Layer Output Layer

ො𝑥𝑖 Ƹ𝑧𝑗

ො𝑦𝑘

𝑁𝑖 𝑁𝑗

FIGURE 3: Structure of the ANN with one hidden layer.

layer, and output layer. Fig.3 shows the structure of the back
propagation (BP) neural network with only one hidden layer. The
mathematical relationship among the input neuron, hidden neu-
ron, and output neuron values can be written as

𝑧𝑗 = 𝑔1 (
𝑁𝑖∑︂
𝑖=1

𝜔𝑖 𝑗𝑥𝑖 + 𝑏𝑗 ), (4a)

𝑦̂𝑘 = 𝑔2 (
𝑁𝑗∑︂
𝑗=1

𝜔𝑗𝑘𝑧𝑗 + 𝑏𝑘), (4b)

where 𝑥𝑖 , 𝑧𝑗 , and 𝑦̂𝑘 are the values of input neuron, hidden neuron,
and output neuron, respectively. 𝜔𝑖 𝑗 and 𝜔𝑗𝑘 are the weighting
coefficients. 𝑁𝑖 and 𝑁𝑗 are the number of neurons in the input
layer and hidden layer. 𝑔1 (·) and 𝑔2 (·) are the activation functions.
The neurons of the previous layer are fed through weighting
coefficients to the connected neurons of the next layer, and the
activation functions with bias in the neurons of the current layer
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Training set 

Step1：Simulation and 
obtaining data

Step2：Data pre-processing

Step3：Construct prediction 
model

Step4：Test the effects of 
neural network

Testing set 

Data

FIGURE 4: Work flow of the simulation.

Time

Now

FIGURE 5: Split the time series data.

are transformed to compute the output. The activation function
adds a nonlinear representation to the neurons, allowing the neural
network to represent complex nonlinear relationships between
input and output variables.

The above process is called forward propagation. However,
an error 𝑒 between the predicted output value and the actual output
value through the neural network can be expressed as

𝑒 =
1
𝑁𝑘

𝑁𝑘∑︂
𝑖=1

(𝑦𝑘 − 𝑦̂𝑘)2, (5)

where 𝑁𝑘 denotes the number of the output value, 𝑦𝑖 denote the
actual output value. Finally, back propagation is used to calculate
the optimal weighting coefficients.

3. OVERVIEW OF THE SIMULATION AND PREDICTION
3.1 Prediction model construction and validation

The artificial neural networks use amounts of training data to
set up a relationship between multiple input and output variables.
Data is the basement of training neural network. Advances in
sensors have made it possible to monitor the motions of floating
offshore structures [19]. Due to the high thresholds of the acqui-
sition of actual motion data, high-fidelity simulations are great
substitutes. The specific workflow is shown in Fig.4. Firstly, the
installation system is modeled in a Sima, and the motions of the
mating points under different sea states are obtained. A split pro-
cess is performed for the obtained time-range signals for motion.
The first 70% of the motion is used as historical data, and the
rest is set as future data, shown in Fig.5. For the data used to
construct the prediction model, the input variables are the mean
value and the central moments (2𝑛𝑑 to 4𝑡ℎ orders) of the relative

motions and the relative velocities in the historical data, while
the output variables are the maximum and minimum relative dis-
placement and relative velocity of the future data. Normalization
is performed for the input variables to

𝑥̂∗𝑖 =
𝑥̂𝑖 − 𝑥̂min
𝑥̂max − 𝑥̂min

, (6)

where 𝑥̂∗
𝑖

denotes normalized input variables, 𝑥̂max and 𝑥̂min denote
the maximum and minimum input variables, respectively. In this
paper, only the three-dimensional relative motion prediction is
presented, for the motion prediction in the different planes can use
the same method. They are not separately listed here to discuss.
To verify the prediction accuracy of the neural networks, the
predicted results are compared to the original output value in the
testing set. The data that make up the testing set can be sensors
obtained. The simulation results are used to be the testing set in
the paper.

Mean square error (MSE) and coefficient of determination
(𝑅2) are used as the criterion to analyze the prediction accuracy.
The expressions of MSE and 𝑅2 are shown as follows

MSE =

∑︁𝑛
𝑖=1 ( 𝑦̂𝑖 − 𝑦𝑖)2

𝑛
, (7a)

𝑅2 = 1 −
∑︁𝑛

𝑖=1 ( 𝑦̂𝑖 − 𝑦𝑖)2∑︁𝑛
𝑖=1 ( 𝑦̄𝑖 − 𝑦𝑖)2 , (7b)

where 𝑦̄𝑖 is the mean of the actual value. MSE reflect the error
level between the actual value 𝑦𝑖 and the predicted value 𝑦̂𝑖 .
When MSE tends to 0, it indicates a better prediction effect. 𝑅2

ranges from 0 to 1, representing the degree of correlation about
the prediction effect.

3.2 Setup of the simulation system
The properties of the catamaran and the Spar foundation are

summarized in Table 1. The two structures are modeled as rigid
bodies with mechanical and hydrodynamic couplings. The lifted
preassembly and the rest preassemblies onboard are considered
to be rigidly connected to the vessel. So the motions of the
lifted preassembly bottom point can be calculated between the
relationship of the vessel motion and the local position of the
lifted preassembly bottom point. The local position of the lifted
preassembly is related to the lifting height. The initial positioning
of the lifted preassembly bottom center point is set to be 2 m above
the top of the Spar top center point. Besides, the Spar foundation
is moored at the sea bed. The DP system is equipped on the vessel
to offset second-order wave, current, and wind loads. Specific
parameter settings can be found in Jiang’s [3] work.

Long-crested wave loads are generated from Jonswap wave
spectrum. The sea states of the simulations are listed in Table
2. Significant wave height 𝐻𝑠 , peak period 𝑇𝑝 , wave direction,
and wave seed are taken into account to evaluate the effect on
the relative displacement and relative velocity extremes. Totally
5× 12× 3× 7=1260 cases are simulated and considered to be the
total data set. The simulation duration for each case is set to 1800
s. The time integration step is set to 0.01 s, and the data storage
step is set to 0.1 s.

4 Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2024/87851/V007T09A017/7361803/v007t09a017-om

ae2024-124558.pdf by U
niversity Tow

n Library O
f Shenzhen, C

an M
a on 02 M

arch 2025



TABLE 1: Properties of the foundation and vessel with preassemblies

Parameter unit Catamaran with preassemblies Foundation

Origin of body reference frame system in {𝑛} m (64,0,0) (0,0,0)
Center of Gravity (COG) in {𝑏} m (-7.3,0,20.6) (0,0,-40)
Mass matrix − diag(1.8e7,1.8e7,1.8e7,

2.3e10,4.1e10,2.5e10)
diag(1.1e7,1.1e7,1.1e7,
2.8e10,2.8e10,3.7e8)

Mating points in {𝑏} m (-64,0,22) (0,0,20)

TABLE 2: Sea states

Input parameters Values
Significant wave height 𝐻𝑠 (m) 1.0, 1.3, 1.6, 1.9, 2.2
Peak period 𝑇𝑝 (s) 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 10.0, 10.5, 11.0, 11.5, 12
Wave seed 1, 2, 3
Wave direction (deg) 0, 30, 60, 90, 120, 150, 180
Simulation time (s) 1800

(a) The scatter of mating points in the three-
dimension.
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FIGURE 6: The scatter of mating points in representative sea states for Hs=1 m, Tp=6 s, Seed=1 and varying wave directions, (a)-(c) denote
wave direction = 0 deg, (d)-(f) denote wave direction = 120 deg.

4. SIMULATION RESULTS ANALYSIS AND NEURAL
NETWORK PREDICTION MODEL

4.1 Simulation results
To investigate the relative motion of the mating points under

different sea states, various sea states are selected to demonstrate
the results. The scatter of mating points and the relative mo-
tions are shown in the horizontal, vertical, and three-dimensional
planes. To make the images clearer, the scatter of mating points
is plotted at every 25 sampling times.

Figure 6 and Figure 7 show the motions and relative motions
of mating points in sea states with different wave directions. The
other wave parameters (i.e., 𝐻𝑠 = 1 m, 𝑇𝑝 = 6 s, Seed=1) remain
consistent. When the wave direction is 0 deg, the mating points

move primarily along the 𝑥-axis. In contrast, when the wave is not
in the direction of the vessel’s length, the mating points produce a
more extensive range of motions along the 𝑦-axis, mainly because
the inertia moment of the vessel rotating around the 𝑦-axis is more
significant. The maximum values of the relative motions also get
larger on the horizontal plane. Fig.8 displays the relative motions
of the mating points in selected sea state with 𝐻𝑠=1.9 m. The
amplitude of the surge motions at the mating points increases,
with a slight increase also observed in the amplitude of the heave
motions. The maximum relative motions also get larger. Fig.9
displays the motions of the mating points in a sea state with larger
𝑇𝑝 = 12 s. Increased motion range is observed at the mating
points, particularly for the spar top point motion. The relative
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FIGURE 7: Relative motions of mating points for Hs=1 m,Tp=6 s, Seed=1, and direction=0 and relative motions of mating points in represen-
tative sea states for Hs=1 m, Tp=6 s, Seed=1 and varying wave directions, (d)-(f) denote wave direction = 0 deg,(g)-(i) denote wave direction
= 120 deg.
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FIGURE 8: The scatter of mating points and relative motions of mating points in a representative sea state (Hs=1.9 m,Tp=6 s, Seed=1, Wave
direction = 0 deg).

motions between the mating points are significantly magnified,
resulting in a maximum relative displacement of up to about 4 m.

Figure 10 summarizes the detailed behavior of the maximum
and minimum relative motions at sea states with various wave
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(a) The scatter of mating points in the three-
dimension.
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FIGURE 9: The scatter of mating points and relative motions of mating points in a representative sea state (Hs=1 m,Tp=12 s, Seed=1, Wave
direction = 0 deg).

parameters. It can be seen that the relative motions are more
sensitive to 𝐻𝑠 and𝑇𝑝 . Fig.10a presents an increase in the relative
motion displacement between mating points as the 𝑇𝑝 grows,
showing a non-linear growth pattern. The maximum relative
displacement reaches 4.08 m at 𝑇𝑝=12 s, which is 56.5% higher
compared to the maximum relative displacement of 2.61 m at
𝑇𝑝 = 6 s. In Fig.10c, increases in the maximum and minimum
relative displacements and the magnitude of the minimum relative
velocity are clearly observed as the 𝐻𝑠 increases. The maximum
relative displacement increases by an mean of 5% for every 0.3
m increment in 𝐻𝑠 . The reason is mainly the correlation between
the first-order motions and the wave height. Conversely, the
maximum relative velocity shows the opposite trend. Positive and
negative relative velocities reflect changes in different directions
of the mating points. The increase in relative displacement causes
the mating operation to get more complex and elevates the failure
probability of the mating operation. Fig.10b and Fig.10d show
that the relative motions are not sensitive to the wave direction
and the wave seed set in Table 2.

4.2 Implement and results of the BP neural network
The 1260 high-fidelity simulations are obtained in Sima.

Subject to the experimental conditions, the testing set also con-
sists of simulations, and the data acting as the testing set does
not participate in neural network training. The workflow of the
prediction method is summarized in the following steps,

1. Obtain 1260 simulations, and split each simulation data
using a 70%-30% time-based split.

2. The mean value of relative motion distance and the cen-
tral moments of 2𝑛𝑑 to 4𝑡ℎ order, as well as the mean value of

relative motion velocity and the central moments of 2𝑛𝑑 to 4𝑡ℎ
order for the preceding 21 minutes (70% time series data of each
simulation), are used as input variables. Calculate the maximum
relative displacement, maximum relative velocity, minimum rel-
ative displacement, and minimum relative velocity of the final 9
minutes (representing 30% of the time series data of each sim-
ulation) to be set as the output values. Combine them into a
complete dataset comprising 1260 cases, each with 8 inputs and
4 outputs. Both input values and output values are normalized.

3. The complete dataset is split into a training and testing
set so that the training set is 1200 cases and the testing set is 60
cases.

4. The neural network model is trained using the training
set.

5. The model is evaluated using the testing set. The ac-
curacy indicators are used to evaluate the predicted effect of the
established model. If the predicted effect is lower than expected,
the hyperparameters are optimized and re-iterated starting from
the third step.

After optimizing the hyper-parameters, (i.e., the number of
hidden layers is set to 2, the number of neurons in each hidden
layer is 15, and the learning rate is set to 0.01), the predicted model
is constructed. The small amount of input variables and output
variables results in a fast speed of constructing the model. The
model can be constructed fast using the normalized values of the
training set, i.e., only about 3 s to form the predicted model. Fig-
ure 11 demonstrates the results of the constructed BP neural net-
work. The predicted effects of maximum relative displacement,
maximum relative velocity, minimum relative displacement, and
minimum relative velocity are shown, respectively. MSE are cal-
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(a) Relative motion extremes at different peak periods. (b) Relative motion extremes at different directions.

(c) Relative motion extremes at different significant wave heights. (d) Relative motion extremes at different seed.

FIGURE 10: Relative motion extremes with different wave parameters

culated based on the maximum relative displacement, minimum
relative displacement, maximum relative velocity, and minimum
relative velocity, with values of 0.03, 0.008, 0.014, and 0.014,
respectively. The prediction effect is excellent with the coeffi-
cient of determination 𝑅2=0.95, 0.94, 0.90, and 0.92 calculated
based on the maximum relative displacement, minimum relative
displacement, maximum relative velocity, and minimum relative
velocity, respectively. More data will further improve accuracy
and robustness.

5. CONCLUSION
Previous studies for the conceptual tower-nacelle-rotor pre-

assembly lifting method focused on the dynamic characteristics of
structures, emphasizing the simulation of relative motion between

the mating points. This research mainly introduces a method for
predicting the relative motion between the mating points that can
be used to assist practical engineering. In the initial work, rel-
ative motion is generated based on Sima. The effects of wave
direction, spectral peak period, significant wave height, and wave
seed on the relative motion are taken into account. Relative mo-
tions between mating points are more sensitive to changes in 𝐻𝑠

and 𝑇𝑝 . The prediction model constructed in this paper extracts
the relative motion statistical characteristics as the input vari-
ables to predict the maximum and minimum values of relative
motions. The results indicate that the model performs well in
prediction, and the model has a fast computational speed. How-
ever, further complex marine environments and higher accuracy
dynamics simulation are indispensable to verify the method.
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(b) Effect of minimum relative displacement prediction.
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(c) Effect of maximum relative velocity prediction.
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FIGURE 11: Prediction results of BP neural network.
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