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Abstract—Effective water area monitoring is crucial for gov-
erning and protecting aquatic environments from pollution.
Utilizing multiple unmanned surface vehicles (USVs) for this
task delivers significant advantages, including high safety, ef-
ficiency, and low operational costs. However, traditional cov-
erage monitoring methods struggle to adapt to the dynamic
nature of water pollution areas and the movements of the
USVs themselves, as pollution spreads and changes over time
based on pollutant characteristics. To address this challenge, the
method described in this paper enables real-time exchange of
map and state information among the USV fleet. This allows
the vehicles to collaboratively share real-time data on covered
and uncovered areas within the monitoring task. Based on this
shared situational awareness, the method calculates the desired
velocity and heading for each USV. Furthermore, it leverages the
natural tendency of USVs to move apart to prevent collisions and
minimize redundant coverage, thereby significantly enhancing
overall coverage efficiency. Real-time path planning explicitly
incorporates the kinematic constraints of the USVs to ensure
feasible and practical trajectories. This paper validates the
coverage capability and efficiency of this method under various
simulated dynamic environmental conditions. Simulation results
demonstrate its effectiveness in adapting to changing maps.

Index Terms—Water area monitoring, multiple unmanned
surface vehicles, coverage path planning, dynamic environment
map.

I. INTRODUCTION

Approximately seventy-one percent of the Earth’s surface
is covered by water, making it one of humanity’s most
valuable and precious resources. However, water pollution
remains a global challenge, driven by unsustainable industrial
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practices and insufficient public policies in some regions [1].
Key pollutants include industrial waste, sewage, radioactive
materials, and plastic waste [2], [3]. Growing populations
and expanding industrial activities are increasing demand
for freshwater from reservoirs and lagoons [4], [5], yet our
understanding of water quality dynamics, particularly the
spatial distribution of pollutant transport pathways and source
areas remains limited. Consequently, monitoring and studying
water quality are essential for safeguarding public health.
These efforts measure pollutant concentrations and physical
water parameters, factors directly impacting human production
and daily life. The dynamic characteristics of polluted areas
presents significant challenges for efficient water environment
monitoring. Advances in the unmanned surface vehicle (USV)
technology now enable multiple USVs deployments for high-
frequency, long-term water quality monitoring in target areas
[6], [7]. This promising approach effectively reduces labor
costs and safety risks while significantly improving task execu-
tion efficiency, offering a powerful new method for protecting
aquatic environments.

The main contributions of this paper are:

e Real-time dynamic coverage planning: enabling multiple
USVs to perform real-time coverage path planning within a
target monitoring area featuring dynamically changing water
pollution map, based on environmental data and inter-USV
status information exchange.

* Kinematic-aware distributed optimization: implementing
a distributed computational framework that explicitly incorpo-
rates USV kinematic constraints to optimize coverage paths.

e Comprehensive performance validation: demonstrating
the method’s capabilities through diverse simulation scenar-
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ios, quantitatively evaluating coverage percentage, completion
time, and total USV path length.

The remainder of this paper is organized as follows. Section
IT reviews related work. Section III introduces the proposed
water area monitoring scheme. Section IV presents the sim-
ulation experiments and discusses the corresponding results.
Finally, concluding remarks are provided in Section V.

II. RELATED WORKS

USVs offer significant advantages for water monitoring
due to their inherent security, autonomy, and programma-
bility. They enable real-time water quality assessment and
sustained synoptic observations—capturing pollutant disper-
sion at adequate spatial resolution before significant changes
occur. USVs greatly enhance the ease, temporal resolution,
and spatial scale of water sampling, a critical yet pervasive
and expensive activity essential for effective water resource
management. Consequently, USV technology has undergone
rapid development for water monitoring missions over recent
decades.

Effective water quality monitoring missions require USVs
to perform coverage path planning (CPP) within the target
area. Operating in vast, complex water environments demands
CPP algorithms with high efficiency and robustness. There
is a clear need for algorithms capable of generating high-
efficiency, high-quality scanning paths for USVs. Practical
deployment faces challenges such as complex coastline shapes,
determining optimal coverage paths, and sequencing sub-
regions for bathymetric surveys. To address coastal bathymetry
challenges, Zhao et al. [8] presented a coverage planning
scheme using the Control Point Douglas-Peucker algorithm.
This leverages control points to accurately represent complex
coastlines and facilitates cellular decomposition. Manjanna
et al. [9] addressed adaptive coverage of unknown spatial
fields using an anytime planning technique for efficient, non-
uniform, data-driven point sampling. For bathymetric mapping
completeness, Ma et al. [10] developed an improved BA*
(IBA*) algorithm using unit decomposition and map update
methods to enhance continuity and environmental modeling
precision. Tang et al. [11] proposed an improved biologically
inspired neural network (BINN) for environments with obsta-
cles, incorporating a template model method and jump point
search algorithm to navigate around obstacles and complete
coverage. Yang et al. [12] developed a sequential algorithm
for cooperative CPP of multiple USVs surveying multiple
regions of interest (ROIs), handling ROI boundary generation,
concave polygon decomposition, and path planning. Wu et al.
[13] introduced a deep reinforcement learning-based coverage
strategy for maritime search and rescue, considering varying
accident probabilities. Xu et al. [14] proposed a Complete
Coverage Neural Network (CCNN) algorithm simplifying the
neural activity differential equation using an environmental
correction term. Elmakis et al. [15] presented a hybrid multi-
destination reinforcement learning approach for USV-assisted
oil spill cleanup, combining conventional global path planning

for multi-destination spills with reinforcement learning-based
CPP to adapt to dynamic spill scenarios.

Beyond USV-specific research, coverage planning for other
robotic platforms is also advancing [16] [17]. Song et al.
[18] proposed an online CPP algorithm based on the &*
algorithm using an exploratory Turing machine, demonstrat-
ing strong adaptability to unknown environments. Zhu et al.
[19] enhanced BINN with their Glasius BINN algorithm for
complete coverage path planning of autonomous underwater
vehicles. Han et al. [20] developed a CPP obstacle avoidance
algorithm for underwater gliders operating in thermocline-
affected sea areas. Kan et al. [21] introduced a hierarchi-
cal, hex-decomposition-based coverage planning algorithm
for unknown, obstacle-rich environments, ensuring resolution-
complete coverage with tunable exploration speed and smooth,
constant-velocity paths for Dubins vehicles. Sridharan et al.
[22] tackled the coverage time challenge of chaotic plan-
ners by optimizing both coverage time and rate for rapid
environmental coverage. Mayilvaganam et al. [23] minimized
turns in polygon decomposition using a tree search model
and an ant colony algorithm to generate polygon access
sequences with the shortest trajectory length. Yi et al. [24]
introduced a Glasius BINN with n-reconfiguration states for
coverage in complex, confined environments, autonomously
generating global paths adapted to the robot’s width via the
n-th reconfiguration state.

However, current CPP research primarily focuses on travers-
ing and repeatedly planning paths with fixed areas. Fur-
thermore, CPP effectiveness remains heavily dependent on
static environmental factors and sensor configurations, such
as coastline geometry and coverage range. Significantly, no
robust methods yet adequately address the challenges posed by
dynamic water areas resulting from pollution diffusion or the
inherent randomness of USV positioning. Key unmet require-
ments include achieving complete area coverage, ensuring
energy efficiency, minimizing path repetition, and guaranteeing
safe navigation under these dynamic conditions.

III. METHODS
A. The USV Models

To simplify the analysis, we ignore roll, pitch, and heave
motions, considering only the 3-degree-of-freedom (DOF)
horizontal plane motion of the USV (namely surge, sway, and
yaw) [25]-[27]. The USV coordinate framework is depicted
in Fig.1.

1 =Ry (M

where R(¢)) = Ry, v = [u,v,7]T, n = [z,y,¢]T.

The kinematic model for each USV performing water area
monitoring is defined by its state (p;,v;) € R™ x R™, where
p; and v; represent the current position and velocity vectors,
respectively, of the i-th USV in an m-dimensional space. For
a group of n USVs, the system dynamics are described by the
following differential equation:
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Fig. 1. The USV coordinate framework.
Pi(t) =vi(t) )
0i(t) = u,(t)
where v; = [u;,v;,7)T is the velocity of USV, u; =

[i1, 05,7;]T is the accelerated velocity of USV, i = 1,..,n
n € N, u, v, r represent the forward, lateral and turning.

During motion, water area monitoring USVs exhibit kine-
matic limitations such as a minimum turning radius. These
constraints arise from the USV hull’s rigid-body dynamics
and actuator design characteristics, where both the throttle
(controlling forward propulsion) and the rudder (controlling
turning) exhibit saturation effects. The throttle constraint is

expressed as:
{0 S &t S Emax (3)

—Ae <441 — e < Ae

where ¢, represents the throttle opening at time %, €pyax
represents the maximum throttle opening, and Ac represents
the maximum throttle change per unit time.
Similarly, the rudder constraint is given by:
_6max S 5t S 6max (4)
—A) <641 — 6 <A

where J; represents the rudder angle at time ¢, 0,5 represents
the maximum rudder angle (where — 0,5 and d,., denote full
left and full right rudder, respectively), and Ad represents the
maximum allowable rudder angle change per unit time.

When planning the desired velocity (actuated by throttle)
and desired heading (actuated by rudder angle), the USV must
satisfy these above constraints.

B. The Dynamic Map Information Interaction

During cooperative sailing, USVs within communication
range d. of each other are defined as neighbor vehicles.
Specifically, USV i and USV j are neighbor vehicles, if:

®)

where ||e|| denotes the Euclidean norm in R2. This reciprocal
relationship satisfies j € N;i € N;ywhere IV; is the neighbor
set of USV 1.

The environmental coverage map for USV ¢ is represented
as a discrete grid map M, = [m;(z)], where z = (z,v)
denotes the center coordinates of each grid cell. Coverage
status is binary:

[ 1(covered)
mi() = {O(uncovered) ©

Given the sensor of each water area monitoring USV have
a detection range of dg, then:

mi(@) = {[[m(x) —pi(t)|| < ds} ()

Neighbor USVs j € NN, exchange coverage maps.
mi(x) = m;(x) ®
After information interaction, their maps synchronize

through the union operation: M; = M; = [m;(z) + m;(x)].

To model dynamic pollution dispersion, the size of rect-
angular monitoring area (the water monitoring area could be
regarded simplified as a rectangle) expands over time. The
map dimensions evolve as:

{ M(t) = 1,(t) x 1,(t) ©)
M(t+1) =L (t+1) x L, (t+1)
lo(t+1)=1,(t) + Ad
{ly(t +1) =1, (t) + Ad (10)

where [, (t) and [, (t) are the length and width of the water
area map at time ¢, Ad is the spatial expansion per unit time.
C. Water Area Coverage Monitoring Scheme

For multiple USVs water area coverage monitoring, their
interaction dynamics are governed by a distance-dependent
potential field function. To ensure differentiability at By z = 0,
we adopt the following o-norm mapping from reference liter-
ature [28]-[30]:

1 2
|mu=[1+wwn—@
o)

where the constant o > 0 scales the norm. Moreover, the
impulse function is defined as:

1,z€10,h)
%{1+cos( =)z e [h1)

0, otherwise

Y

pn(z) = 12)

where h € (0,1) . The equation (12) represents a smooth,
stable dissipative system equation. Weighting the adjacency
matrix yields:

aij(p(t)) = p(

where r, = ||7]]
Ta-

Ip; () — (D,

Ta

) €00, 13)

,- Note that ||aij)|| = 0, when ||p;

1,5 #1

—pill >
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For the multiple USVs planning system, the differentiable
dynamic equation can be simplified as:

{m(ﬂ = v;(t)

2i(t) = w2 (1) +ul (1) (1

where u$(t) represents the control vector for the interaction
between each USV, and ] (¢) represents the control vector for
tracking the virtual target point. Each USV obtains positions
of neighbor USVs within the communication range d. and
nearest obstacles within sensor range d,. From equation (5),
neighbor USVs satisfy:

NP (t) =45+ ps(t) —pi®)]| <7e,j=1,2,...,N,j # i}
15)
In order to ensure that the inter-USV maintain a relatively
safe distance d,, from each other, the u'(¢) following can be
calculated as:

uf = Y o (Ips(6) = pi(D)],) ni+

JENY (16)
s > ay(@(t)) (v;(t) — i(t))
JENF
where n;; = o5 (p;(t) —pi(t)) = pilt)-pi(t) repre-

o V1itwlp; () —pi(t)]?
sents the vector from p;(t) to p;(t), @ € (0, 1).

By tracking the virtual target points and controlling input,
the u; (t) is calculated as follows:

ul = —cf (pi(t) — Pi(t)) — c3v;

where pt(t) € R™ is the virtual target coordinate position

of the ¢-th USV at time t; > 0, and c,”, > 0,7 =1,2 and
v = o,y are positive constant parameter, .

According to the algorithm, the position of the virtual target

point p!(¢) is determined by the revenue function equation.
The revenue function equation is:

& = (L= [mi(2)])(py + (1 = py)Ai(2))

where p, is a constant value, and the functional equation \;
is defined by:

Ai(@) = exp(—=k1 [|pi(t) — 2| — k2 [[pi(t) — =)

where k; and ko, are positive constant values.

The revenue value of each grid can be calculated through
Equation (16). The selection of the virtual target point posi-
tion at time ¢; + 1 follows the following objective function
equation:

a7

(18)

19)

pL(ty + 1) = argmax§;(z, ty,) (20)

TEXq
where ¥, = {zle € v, |z — ;|| = lle — p, || > 1,5 € N}
where x is the set of all grid point centers.

According to the section II, for USVs, the communication
range is d. and the exploration coverage distance is ds. When
the USV mission begins (f; = 0), all the water area maps
have not been covered (M; = 0). When a water area map is
covered by the USV (|lz —p;(t)|| < rs, as shown in Fig.2,
pink regions).
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Fig. 2. The USV illustration of coverage area.

When the conditions of USVs statisfy ||p;(tx) — pi(tx)| <
T¢, they synchronize maps (M ;(t,) = M ;(t;)) and recompute
virtual targets p! to minimize coverage overlap, thereby reduc-
ing energy consumption and improving monitoring efficiency.

IV. SIMULATION EXPERIMENTS

To evaluate the proposed method, we conducted multiple
simulation experiments, with corresponding results presented
in this section.

A. Simulation Design

Firstly, we designed some simulation experiments for mul-
tiple USVs coverage path planning in dynamic environment
maps. Throughout all simulation experiments, we maintained
consistent paramenters: the map and USV’s state resolution
is 0.5 m, the USV’s state update frequency is 10 Hz. The
communication distance between USVs is d. = 20 m, the area
exploration distance is ds = 5 m. The USV initial velocity is
uniformly randomized in [—1,1]* m/s, the initial positions of
all of USVs are randomly generated. Parameter values and
weighting factors (tuned through simulation) are provided in
Table. I.

TABLE 1
PARAMETERS SETTING
cf | c§ c? c; k1 ko Py

60 | 16 | 30 | 12 | 0.04 | 0.01 | 0.2

All simulation experiments were executed in MATLAB on
a workstation with a 2.1 GHz Intel Core i7 processor, 32 GB
RAM, Windows 11 operating system.

B. Simulation Results

The initial monitoring area measures 30x30 units, expand-
ing to a maximum size of 50x50 units due to simulated
pollution dispersion. Five USVs were deployed in the follow-
ing simulation experiments. Fig.3 through Fig.5 illustrate the
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coverage monitoring process at start, intermediate, and final
stages.

USV position (Time: 0.1s, Map size: 30m)

o 5 10 15 20 2 30
x(m)

Fig. 3. The start of coverage monitoring process.

In Fig.3 - Fig.5, the left subfigure shows a screenshot of the
coverage monitoring dynamic process. In this subfigure, the
colored solid circles represent USVs’ positions, the colored
hexagonal stars represent the virtual target points, and the
black arrows from solid circles represent the actual planned
trajectories at that time. The right subfigure shows the display
of the coverage area during the monitoring process, the color
changes from light to dark, indicating the temporal sequence
of coverage monitoring.

USV position (Time: 10.1s, Map size: 40m)

Fig. 4. The intermediate of coverage monitoring process.

USV position (Time: 42.85, Map size: 50m)

*

x(m)

Fig. 5. The final of coverage monitoring process.

Fig.6 presents trajectory analysis. While each USV inde-
pendently calculates its course and velocity based on its own
coverage mission and real-time coverage status, resulting in
varying path lengths, their collective behavior shows consistent
operational patterns.

The whole process of coverage monitoring progression is
quantified in Fig.7. The visualization tracks mission com-
pletion at (30, 45, 60, 75, 90, and 99) percent coverage

Distances(m)

5 10 15 20 25 30 35 40
Time(s)

Fig. 6. The total monitoring distances of five USVs.

thresholds. The pink regions represent the area that has been
covered by USVs. Early-stage coordination minimizes redun-
dant coverage, while the 99 percent threshold signifies mission
completion by all USVs.

Coverage progress visualization

Coverage percent: 32.8% (Time: 0.1s) Coverage percent: 46.4% (Time: 0.6s) Coverage percent: 61.5% (Time: 1.35)
£

x(m) x(m) x(m)

Coverage percent: 75.3% (Time: 5.95)

EY
25|
~20
£ g
> 15,
C}
10 .

K2 ’E/)

x(m) x(m)

Coverage percent: 90.1% (Time: 30.65) Coverage percent: 99.0% (Time: 42.85;

Legend: O = Start, (] = End, Colour = Path

Fig. 7. Coverage monitoring status and coverage percent at different times.

Fig.8 compares coverage monitoring completion times for
varying USVs fleet sizes under identical parameters. During
map expansion phases, coverage times exhibit minor fluctua-
tions. As the number of USVs increases, total area coverage
monitoring time decreases significantly.

V. CONCLUSION

This research paper presents a novel real-time coverage
method for dynamic water pollution monitoring using mul-
tiple USVs. The method addresses key challenges associated
with the spatiotemporal dynamic evolution of water pollution
and the USV kinematic constraints through real-time inter
USVs information interaction, calculating desired velocities
and headings, collision-free trajectory optimization, and min-
imization of redundant coverage. Comprehensive simulation
experiments demonstrate the method’s effectiveness and ef-
ficiency in achieving coverage within dynamic environment
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Fig.
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8. Comparison of monitoring time covered by different numbers of

USVs.

maps. This work represents a significant advancement toward
USVs for water pollution control and broader environmental
protection.
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