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Abstract—Effective water area monitoring is crucial for gov-
erning and protecting aquatic environments from pollution.
Utilizing multiple unmanned surface vehicles (USVs) for this
task delivers significant advantages, including high safety, ef-
ficiency, and low operational costs. However, traditional cov-
erage monitoring methods struggle to adapt to the dynamic
nature of water pollution areas and the movements of the
USVs themselves, as pollution spreads and changes over time
based on pollutant characteristics. To address this challenge, the
method described in this paper enables real-time exchange of
map and state information among the USV fleet. This allows
the vehicles to collaboratively share real-time data on covered
and uncovered areas within the monitoring task. Based on this
shared situational awareness, the method calculates the desired
velocity and heading for each USV. Furthermore, it leverages the
natural tendency of USVs to move apart to prevent collisions and
minimize redundant coverage, thereby significantly enhancing
overall coverage efficiency. Real-time path planning explicitly
incorporates the kinematic constraints of the USVs to ensure
feasible and practical trajectories. This paper validates the
coverage capability and efficiency of this method under various
simulated dynamic environmental conditions. Simulation results
demonstrate its effectiveness in adapting to changing maps.

Index Terms—Water area monitoring, multiple unmanned
surface vehicles, coverage path planning, dynamic environment
map.

I. INTRODUCTION

Approximately seventy-one percent of the Earth’s surface

is covered by water, making it one of humanity’s most

valuable and precious resources. However, water pollution

remains a global challenge, driven by unsustainable industrial

This work was partially supported by the Shenzhen Science and Technology
Program (Grant No. WDZC20231128135104001).

practices and insufficient public policies in some regions [1].

Key pollutants include industrial waste, sewage, radioactive

materials, and plastic waste [2], [3]. Growing populations

and expanding industrial activities are increasing demand

for freshwater from reservoirs and lagoons [4], [5], yet our

understanding of water quality dynamics, particularly the

spatial distribution of pollutant transport pathways and source

areas remains limited. Consequently, monitoring and studying

water quality are essential for safeguarding public health.

These efforts measure pollutant concentrations and physical

water parameters, factors directly impacting human production

and daily life. The dynamic characteristics of polluted areas

presents significant challenges for efficient water environment

monitoring. Advances in the unmanned surface vehicle (USV)

technology now enable multiple USVs deployments for high-

frequency, long-term water quality monitoring in target areas

[6], [7]. This promising approach effectively reduces labor

costs and safety risks while significantly improving task execu-

tion efficiency, offering a powerful new method for protecting

aquatic environments.

The main contributions of this paper are:

• Real-time dynamic coverage planning: enabling multiple

USVs to perform real-time coverage path planning within a

target monitoring area featuring dynamically changing water

pollution map, based on environmental data and inter-USV

status information exchange.

• Kinematic-aware distributed optimization: implementing

a distributed computational framework that explicitly incorpo-

rates USV kinematic constraints to optimize coverage paths.

• Comprehensive performance validation: demonstrating

the method’s capabilities through diverse simulation scenar-
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ios, quantitatively evaluating coverage percentage, completion

time, and total USV path length.

The remainder of this paper is organized as follows. Section

II reviews related work. Section III introduces the proposed

water area monitoring scheme. Section IV presents the sim-

ulation experiments and discusses the corresponding results.

Finally, concluding remarks are provided in Section V.

II. RELATED WORKS

USVs offer significant advantages for water monitoring

due to their inherent security, autonomy, and programma-

bility. They enable real-time water quality assessment and

sustained synoptic observations—capturing pollutant disper-

sion at adequate spatial resolution before significant changes

occur. USVs greatly enhance the ease, temporal resolution,

and spatial scale of water sampling, a critical yet pervasive

and expensive activity essential for effective water resource

management. Consequently, USV technology has undergone

rapid development for water monitoring missions over recent

decades.

Effective water quality monitoring missions require USVs

to perform coverage path planning (CPP) within the target

area. Operating in vast, complex water environments demands

CPP algorithms with high efficiency and robustness. There

is a clear need for algorithms capable of generating high-

efficiency, high-quality scanning paths for USVs. Practical

deployment faces challenges such as complex coastline shapes,

determining optimal coverage paths, and sequencing sub-

regions for bathymetric surveys. To address coastal bathymetry

challenges, Zhao et al. [8] presented a coverage planning

scheme using the Control Point Douglas-Peucker algorithm.

This leverages control points to accurately represent complex

coastlines and facilitates cellular decomposition. Manjanna

et al. [9] addressed adaptive coverage of unknown spatial

fields using an anytime planning technique for efficient, non-

uniform, data-driven point sampling. For bathymetric mapping

completeness, Ma et al. [10] developed an improved BA*

(IBA*) algorithm using unit decomposition and map update

methods to enhance continuity and environmental modeling

precision. Tang et al. [11] proposed an improved biologically

inspired neural network (BINN) for environments with obsta-

cles, incorporating a template model method and jump point

search algorithm to navigate around obstacles and complete

coverage. Yang et al. [12] developed a sequential algorithm

for cooperative CPP of multiple USVs surveying multiple

regions of interest (ROIs), handling ROI boundary generation,

concave polygon decomposition, and path planning. Wu et al.

[13] introduced a deep reinforcement learning-based coverage

strategy for maritime search and rescue, considering varying

accident probabilities. Xu et al. [14] proposed a Complete

Coverage Neural Network (CCNN) algorithm simplifying the

neural activity differential equation using an environmental

correction term. Elmakis et al. [15] presented a hybrid multi-

destination reinforcement learning approach for USV-assisted

oil spill cleanup, combining conventional global path planning

for multi-destination spills with reinforcement learning-based

CPP to adapt to dynamic spill scenarios.

Beyond USV-specific research, coverage planning for other

robotic platforms is also advancing [16] [17]. Song et al.

[18] proposed an online CPP algorithm based on the ε∗

algorithm using an exploratory Turing machine, demonstrat-

ing strong adaptability to unknown environments. Zhu et al.

[19] enhanced BINN with their Glasius BINN algorithm for

complete coverage path planning of autonomous underwater

vehicles. Han et al. [20] developed a CPP obstacle avoidance

algorithm for underwater gliders operating in thermocline-

affected sea areas. Kan et al. [21] introduced a hierarchi-

cal, hex-decomposition-based coverage planning algorithm

for unknown, obstacle-rich environments, ensuring resolution-

complete coverage with tunable exploration speed and smooth,

constant-velocity paths for Dubins vehicles. Sridharan et al.

[22] tackled the coverage time challenge of chaotic plan-

ners by optimizing both coverage time and rate for rapid

environmental coverage. Mayilvaganam et al. [23] minimized

turns in polygon decomposition using a tree search model

and an ant colony algorithm to generate polygon access

sequences with the shortest trajectory length. Yi et al. [24]

introduced a Glasius BINN with n-reconfiguration states for

coverage in complex, confined environments, autonomously

generating global paths adapted to the robot’s width via the

n-th reconfiguration state.

However, current CPP research primarily focuses on travers-

ing and repeatedly planning paths with fixed areas. Fur-

thermore, CPP effectiveness remains heavily dependent on

static environmental factors and sensor configurations, such

as coastline geometry and coverage range. Significantly, no

robust methods yet adequately address the challenges posed by

dynamic water areas resulting from pollution diffusion or the

inherent randomness of USV positioning. Key unmet require-

ments include achieving complete area coverage, ensuring

energy efficiency, minimizing path repetition, and guaranteeing

safe navigation under these dynamic conditions.

III. METHODS

A. The USV Models

To simplify the analysis, we ignore roll, pitch, and heave

motions, considering only the 3-degree-of-freedom (DOF)

horizontal plane motion of the USV (namely surge, sway, and

yaw) [25]–[27]. The USV coordinate framework is depicted

in Fig.1.

η̇̇η̇η = RRR(ψ)vvv (1)

where RRR(ψ) = RRRz,ψ , vvv = [u, v, r]T, ηηη = [x, y, ψ]T.

The kinematic model for each USV performing water area

monitoring is defined by its state (pppi, vvvi) ∈ R
m ×R

m, where

pppi and vvvi represent the current position and velocity vectors,

respectively, of the i-th USV in an m-dimensional space. For

a group of n USVs, the system dynamics are described by the

following differential equation:
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Fig. 1. The USV coordinate framework.

{
ṗ̇ṗpi(t) = vvvi(t)

v̇̇v̇vi(t) = uuui(t)
(2)

where vvvi = [ui, vi, ri]
T is the velocity of USV, uuui =

[u̇i, v̇i, ṙi]
T is the accelerated velocity of USV, i = 1, .., n,

n ∈ N, u, v, r represent the forward, lateral and turning.

During motion, water area monitoring USVs exhibit kine-

matic limitations such as a minimum turning radius. These

constraints arise from the USV hull’s rigid-body dynamics

and actuator design characteristics, where both the throttle

(controlling forward propulsion) and the rudder (controlling

turning) exhibit saturation effects. The throttle constraint is

expressed as: {
0 ≤ εt ≤ εmax

−Δε ≤ εt+1 − εt ≤ Δε
(3)

where εt represents the throttle opening at time t, εmax

represents the maximum throttle opening, and Δε represents

the maximum throttle change per unit time.

Similarly, the rudder constraint is given by:{
−δmax ≤ δt ≤ δmax

−Δδ ≤ δt+1 − δt ≤ Δδ
(4)

where δt represents the rudder angle at time t, δmax represents

the maximum rudder angle (where −δmax and δmax denote full

left and full right rudder, respectively), and Δδ represents the

maximum allowable rudder angle change per unit time.

When planning the desired velocity (actuated by throttle)

and desired heading (actuated by rudder angle), the USV must

satisfy these above constraints.

B. The Dynamic Map Information Interaction

During cooperative sailing, USVs within communication

range dc of each other are defined as neighbor vehicles.

Specifically, USV i and USV j are neighbor vehicles, if:

Ni(t) = {j : ‖pppj(t)− pppi(t)‖ < dc, j = 1, 2, ..., N, j �= i}
(5)

where ‖•‖ denotes the Euclidean norm in R
2. This reciprocal

relationship satisfies j ∈ Nii ∈ Njwhere Ni is the neighbor

set of USV i.
The environmental coverage map for USV i is represented

as a discrete grid map MMM i = [mi(xxx)], where xxx = (x, y)
denotes the center coordinates of each grid cell. Coverage

status is binary:

mi(xxx) =

{
1(covered)

0(uncovered)
(6)

Given the sensor of each water area monitoring USV have

a detection range of ds, then:

mi(xxx) = {‖m(xxx)− pppi(t)‖ < ds} (7)

Neighbor USVs j ∈ Ni exchange coverage maps.

mi(xxx) = mj(xxx) (8)

After information interaction, their maps synchronize

through the union operation: MMM i =MMM j = [mi(xxx) +mj(xxx)].
To model dynamic pollution dispersion, the size of rect-

angular monitoring area (the water monitoring area could be

regarded simplified as a rectangle) expands over time. The

map dimensions evolve as:{
MMM(t) = lx(t)× ly(t)

MMM(t+ 1) = lx(t+ 1)× ly(t+ 1)
(9)

{
lx(t+ 1) = lx(t) + Δd
ly(t+ 1) = ly(t) + Δd

(10)

where lx(t) and ly(t) are the length and width of the water

area map at time t, Δd is the spatial expansion per unit time.

C. Water Area Coverage Monitoring Scheme

For multiple USVs water area coverage monitoring, their

interaction dynamics are governed by a distance-dependent

potential field function. To ensure differentiability at By z = 0,

we adopt the following σ-norm mapping from reference liter-

ature [28]–[30]:

‖z‖σ =
1

�

[√
1 +� ‖z‖2 − 1

]
(11)

where the constant � > 0 scales the norm. Moreover, the

impulse function is defined as:

ρh(z) =

⎧⎪⎨⎪⎩
1, z ∈ [0, h)

1
2

[
1 + cos(π z−h

1−h )
]
, z ∈ [h, 1)

0, otherwise

(12)

where h ∈ (0, 1) . The equation (12) represents a smooth,

stable dissipative system equation. Weighting the adjacency

matrix yields:

aij(ppp(t)) = ρ(
‖pppj(t)− pppi(t)‖σ

rα
) ∈ [0, 1] , j �= i (13)

where rα = ‖r‖σ . Note that
∥∥a(ij)∥∥ = 0, when ‖pppj − pppi‖ >

rα.
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For the multiple USVs planning system, the differentiable

dynamic equation can be simplified as:{
ṗ̇ṗpi(t) = vvvi(t)

v̇̇v̇vi(t) = uuuα
i (t) + uuuγ

i (t)
(14)

where uuuα
i (t) represents the control vector for the interaction

between each USV, and uuuγ
i (t) represents the control vector for

tracking the virtual target point. Each USV obtains positions

of neighbor USVs within the communication range dc and

nearest obstacles within sensor range ds. From equation (5),

neighbor USVs satisfy:

Nα
i (t) = {j : ‖pppj(t)− pppi(t)‖ < rc, j = 1, 2, . . . , N, j �= i}

(15)

In order to ensure that the inter-USV maintain a relatively

safe distance da from each other, the uuuα
i (t) following can be

calculated as:

uuuα
i =cα1

∑
j∈Nα

i

φα

(‖pppj(t)− pppi(t)‖σ
)
nnnij+

cα2
∑
j∈Nα

i

aij(ppp(t)) (vvvj(t)− vvvi(t))
(16)

where nnnij = σ�(pppj(t) − pppi(t)) =
pppj(t)−pppi(t)√

1+�‖pppj(t)−pppi(t)‖2
repre-

sents the vector from pppj(t) to pppi(t), � ∈ (0, 1).
By tracking the virtual target points and controlling input,

the uuuγ
i (t) is calculated as follows:

uuuγ
i = −cγ1(pppi(t)− pppti(t))− cγ2vvvi (17)

where pppti(t) ∈ R
m is the virtual target coordinate position

of the i-th USV at time tk > 0, and cνη > 0, η = 1, 2 and

ν = α, γ are positive constant parameter, .

According to the algorithm, the position of the virtual target

point pppti(t) is determined by the revenue function equation.

The revenue function equation is:

ξi = (1− |mi(xxx)|)(ργ + (1− ργ)λi(xxx)) (18)

where ργ is a constant value, and the functional equation λi

is defined by:

λi(xxx) = exp(−k1 ‖pppi(t)− xxx‖ − k2
∥∥pppti(t)− xxx

∥∥) (19)

where k1 and k2 are positive constant values.

The revenue value of each grid can be calculated through

Equation (16). The selection of the virtual target point posi-

tion at time tk + 1 follows the following objective function

equation:

pppti(tk + 1) = argmax
x∈χi

ξi(xxx, tk) (20)

where χ̃i = {xxx|xxx ∈ χ, ‖xxx− pppj‖ ≥ ‖xxx− pppj‖ > rs, j ∈ Nα
i } ,

where χ is the set of all grid point centers.

According to the section II, for USVs, the communication

range is dc and the exploration coverage distance is ds. When

the USV mission begins (tk = 0), all the water area maps

have not been covered (MMM i = 0). When a water area map is

covered by the USV (‖xxx− pppi(t)‖ ≤ rs, as shown in Fig.2,

pink regions).

Fig. 2. The USV illustration of coverage area.

When the conditions of USVs statisfy ‖pppj(tk)− pppi(tk)‖ <
rc, they synchronize maps (MMM i(tk) =MMM j(tk)) and recompute

virtual targets pppti to minimize coverage overlap, thereby reduc-

ing energy consumption and improving monitoring efficiency.

IV. SIMULATION EXPERIMENTS

To evaluate the proposed method, we conducted multiple

simulation experiments, with corresponding results presented

in this section.

A. Simulation Design

Firstly, we designed some simulation experiments for mul-

tiple USVs coverage path planning in dynamic environment

maps. Throughout all simulation experiments, we maintained

consistent paramenters: the map and USV’s state resolution

is 0.5 m, the USV’s state update frequency is 10 Hz. The

communication distance between USVs is dc = 20 m, the area

exploration distance is ds = 5 m. The USV initial velocity is

uniformly randomized in [−1, 1]
2

m/s, the initial positions of

all of USVs are randomly generated. Parameter values and

weighting factors (tuned through simulation) are provided in

Table. I.

TABLE I
PARAMETERS SETTING

cα1 cα2 cγ1 cγ2 k1 k2 ργ
60 16 30 12 0.04 0.01 0.2

All simulation experiments were executed in MATLAB on

a workstation with a 2.1 GHz Intel Core i7 processor, 32 GB

RAM, Windows 11 operating system.

B. Simulation Results

The initial monitoring area measures 30×30 units, expand-

ing to a maximum size of 50×50 units due to simulated

pollution dispersion. Five USVs were deployed in the follow-

ing simulation experiments. Fig.3 through Fig.5 illustrate the
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coverage monitoring process at start, intermediate, and final

stages.

Fig. 3. The start of coverage monitoring process.

In Fig.3 - Fig.5, the left subfigure shows a screenshot of the

coverage monitoring dynamic process. In this subfigure, the

colored solid circles represent USVs’ positions, the colored

hexagonal stars represent the virtual target points, and the

black arrows from solid circles represent the actual planned

trajectories at that time. The right subfigure shows the display

of the coverage area during the monitoring process, the color

changes from light to dark, indicating the temporal sequence

of coverage monitoring.

Fig. 4. The intermediate of coverage monitoring process.

Fig. 5. The final of coverage monitoring process.

Fig.6 presents trajectory analysis. While each USV inde-

pendently calculates its course and velocity based on its own

coverage mission and real-time coverage status, resulting in

varying path lengths, their collective behavior shows consistent

operational patterns.
The whole process of coverage monitoring progression is

quantified in Fig.7. The visualization tracks mission com-

pletion at (30, 45, 60, 75, 90, and 99) percent coverage

Fig. 6. The total monitoring distances of five USVs.

thresholds. The pink regions represent the area that has been

covered by USVs. Early-stage coordination minimizes redun-

dant coverage, while the 99 percent threshold signifies mission

completion by all USVs.

Fig. 7. Coverage monitoring status and coverage percent at different times.

Fig.8 compares coverage monitoring completion times for

varying USVs fleet sizes under identical parameters. During

map expansion phases, coverage times exhibit minor fluctua-

tions. As the number of USVs increases, total area coverage

monitoring time decreases significantly.

V. CONCLUSION

This research paper presents a novel real-time coverage

method for dynamic water pollution monitoring using mul-

tiple USVs. The method addresses key challenges associated

with the spatiotemporal dynamic evolution of water pollution

and the USV kinematic constraints through real-time inter

USVs information interaction, calculating desired velocities

and headings, collision-free trajectory optimization, and min-

imization of redundant coverage. Comprehensive simulation

experiments demonstrate the method’s effectiveness and ef-

ficiency in achieving coverage within dynamic environment
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Fig. 8. Comparison of monitoring time covered by different numbers of
USVs.

maps. This work represents a significant advancement toward

USVs for water pollution control and broader environmental

protection.
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