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Abstract: Wing-sailed autonomous sailing monohulls are promising platforms used in various sce-
narios to provide data for marine science research. These platforms need to operate long-term in
changing seas; their general configurations (size matching between sail, hull, and keel) necessitate
careful trade-offs to balance safety and efficiency. Since autonomous sailboats are often designed for
different observation missions, scientific pay-loads and target areas, their design space is considerably
large. It is also challenging to obtain prior performance estimation from historical designs. Therefore,
traditional offline surrogate-based simulation-driven design frameworks suffer from a large amount
of sampling required, the computational cost of which remains too expensive for such ad hoc design
tasks. This paper proposes an innovative, generalised simulation-driven framework combining
Bayesian optimisation and knowledge transfer. It allows for high-quality, low-cost optimisation of
autonomous sailing monohulls” general configuration without initial design and prior performance
estimation. The proposed optimisation framework has been used to optimise the ‘Seagull’ prototype
within the design constraints. The optimised design exhibits significant performance improvements.
At the same time, the results show that the present method is significantly superior to traditional of-
fline methods. The authors believe that the proposed framework promises to provide the autonomous
sailing community with a solution for a general design methodology.

Keywords: autonomous sailboat; simulation-based design; Bayesian optimisation; surrogate-assisted
evolutionary algorithm

1. Introduction

Wing-sailed autonomous sailing monohulls are promising platforms for ocean data
collection with good endurance, durability, and manoeuvrability [1]. In recent years,
they have played vital roles in practical tasks such as ocean floor mapping [2], marine
biological surveys [3], long-term ocean observations [4,5] and water mass tracking [6].
Without competent motivated crews and structurally reliable area-adjustable sails, small
sails [7,8] and long and heavy keels [9,10] are often equipped to ensure the platform will
not heel excessively changeable conditions. Ref. [11] states that general configurations
(size matching between sail, hull, and keel) of wing-sailed autonomous sailing monohulls
are usually designed empirically, resulting in excess overturning resistance (in terms of
both overturning moment generation and stability) but weak speed performance. Since
gales are infrequent [12], weak speed performance can weaken their passability in areas of
strong currents, deteriorate the ability to track water masses and reduce the efficiency of
long-distance observations [13,14] most of the time. Systematic optimisation of the general
configuration is necessary to further unleash their speed potential while ensuring safety.
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Optimising the general configuration has been an active topic of research in crewed
(racing) sailboats. The basic framework is a double-loop process, as shown in Figure 1 [15,16].
For each general configuration, the inner loop—velocity prediction program (VPP) [17-20]
was used to obtain its speed performance under (one or several) external conditions
(including true wind speed, TWS and true wind angle, TWA) of interest. The design
parameters are then adjusted iteratively in the outer loop according to the performance
metrics to obtain a Pareto front or an optimal design. Depending on the source of the force
model in the VPP, the framework can be divided into two categories: experimentally, with
towing tanks and wind tunnels, or numerically, by computational fluid dynamics (CFD)
simulations. Wing-sailed autonomous sailing monohull designs are usually an ad hoc task
for mission scenarios, and the shape of the hull and keel may be “non-standard”. So, it
seems more sensible to adopt CFD simulations on hydrodynamic forces than to conduct a
multitude of prohibitive tank tests.
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Figure 1. General configuration optimisation framework for a typical sailboat. Note: the same
colours will be used in later flowcharts to aid better understanding.

Compared to other design problems (e.g., ships or AUVs design optimisation), CFD-
based simulation-driven optimisation of sailboats is naturally more computationally costly.
This is because in the former, the merit of a design can be obtained with only one sim-
ulation (one resistance assessment), whereas in the latter, the merit evaluation process
(VPP itself) is a loop, with more simulations required. Furthermore, autonomous sailboat
design suffers more from computational cost problems than crewed sailboats. The main
reason is that most performance-sensitive crewed sailboat design requirements come from
regattas, class rules limit racing boats, and many historical regatta data are available for
reference. Therefore, the optimisation process only needs to explore limited design space
by performing several simulations concentrated around the performance predictions per
design. Then, offline surrogates that require no update were constructed by sampling the
cross matrix to mimic aerodynamic and hydrodynamic characteristics [21-23], as Figure 2
shows. However, for wing-sailed autonomous sailing monohulls, the specific mission re-
quirements, the “non-standard” hull and keel, and the scale effects [24,25] make it difficult
for designers to give both a good baseline design and a rough performance estimation.
If offline surrogate-assisted optimisation is employed, a massive number of simulations
are required to construct an accurate global model for each design. Our previous work
proposed a CFD-compatible VPP of wing-sailed autonomous sailing monohulls [26]; in
the case study, we used about 150 CFD simulations to model the specific (one) design of
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our prototype. Considering that each simulation can take several to tens of hours for an
optimisation task, the computational costs are clearly not practical for engineering with a

large design space.
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Figure 2. Schematic diagram of samplings of general configuration optimisation of a crewed
racing sailboat. The design space of a crewed sailboat is limited. For each design, there is also good
enough prior information on performance. Thus, only a relatively small amount of CFD sampling
is required.

To maximise the speed performance of wing-sailed autonomous sailing monohulls
within the constraints of safety (heeling), the paper outlines a novel optimisation framework
for the general configuration. The framework effectively reduces the computational cost by
employing two surrogates. Knowledge transfer surrogates reuse CFD-generated data to
provide prior information, while the Kriging surrogate combined with Bayesian optimi-
sation methods ensures that the added sampling is concentrated around the equilibrium
points of interest. The sail design will be optimised on the prototype ‘Seagull” to verify
the effectiveness of the method and to improve the speed performance of the platform.
The authors believe that the proposed framework holds the promise of providing the au-
tonomous sailboat community with a generic, systematic and engineering-implementable
design and optimisation method. Additionally, it will lead to significant improvements in
the performance of subsequent platforms in the future, making autonomous sailboats a
more effective data collection platform for marine science.

This paper is organised into five sections. Following this introduction, Section 2
describes the optimisation problem and expounds on the motivation to apply Bayesian
optimisation and knowledge transfer. The implementation of the optimisation framework
is detailed in Section 3. Section 4 presents the case study of the wing sail design of the
‘Seagull’ prototype and illustrates the results. Finally, conclusions are drawn in Section 5.

2. Motivations
2.1. Problem Description

The optimisation aims to find the Pareto front of the speed metric in a bounded design
space S under a set of conflicting external conditions (e.g., upwind with large TWS and
downwind with small TWS) C = {c;}, as shown in Equation (1), where d is the set of design
variables for a particular design, and c; is the set of specific TWA and TWS in the inertia
system of the platform.

Ref. [11] states that to ensure overturning resistance in headwinds with large TWS,
most designers sacrifice the overall speed metric of the platform, especially in downwind
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conditions with small TWS. Therefore, we optimise two different operating points while
limiting the maximum heel angle, i.e., i = 2 in this paper.

P(d) = argmax vy ; (1)
des

The process is shown in Figure 3. For each design d, the speed metric v, ; under ¢; can
be obtained from the design evaluator VPP, as shown in Equation (2). More specifically, the
VPP obtains the forces (and moments) by aero- and dynamical models of specific design d
under a specific external environment c;, speed v;, attitude attitude, and control quantities
denoted action, as shown in Equations (3) and (4):

vs_i = fvrp(d, ci) 2
Fareo = fareo(d, ¢i, vs, attitude, action) (3)
Fuydro = fuydro (d, c;, vs, attitude, action) 4)
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Figure 3. Problem Description. The core issue is the difficulty of obtaining surrogates of a particular
design’s hydro- and aerodynamic characteristics in the absence of prior performance estimates. Note:
The same colouring scheme is used as in Figure 1 for comparison.

Then, the maximum speed that satisfies the multi-degree-of-freedom equilibrium
equation is found iteratively, shown as Equations (5) and (6). Since the constraint e = 0 is
too strict, it is usually relaxed to e < € in practice. Then, the objective function can be
rewritten as Equation (7), where k is a predefined parameter that guarantees the sensitivity
of the optimisation to vs.

Refs. [25,27] state that the predictive performance of VPP depends heavily on the
aero- and hydrodynamic model of specific design fareo and fj,y4ro- These models should be
extensive, covering feedback corresponding to all the states of interest. For engineering
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realizability, how to reasonably obtain fareo and fjy4r, without accurate prior performance
estimates is the key to the problem.

v ;= argmax vsste=0 (5)
vg,attitude,action

6
e = Z | Fareo + thdr0| (6)
DOF=1
argmin  —vs + kxe ?)

vg,attitude,action

2.2. Constructing Surrogate Adaptively Using Bayesian Optimisation

An essential aspect of reducing the computational cost is to note that the VPP in the
autonomous sailboat design flow only needs to evaluate the performance of a particular
design under two conflicting (upwind with large TWS and downwind with small TWS)
rather than various external environments as in a general VPP [28]. Thus, for each design,
a fine-grained global surrogate is not necessary. As Figure 4 shows, sampling is expected to
be concentrated around the unknown equilibrium state (i.e., the actual operating state of
the platform satisfying the multi-degree-of-freedom equilibrium equation under c;).
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Figure 4. Schematic diagram of ideal sampling. Ideally, it is only necessary to sample near the
equilibrium point under two conflicting states for each design.

Bayesian optimisation (BO) [29] has been widely used in similar non-convex optimisa-
tion problems requiring extensive and expensive simulations [30-32]). Unlike the classical
space-filling sampling pattern (offline surrogate-assisted design with static data input), BO
collects new data during the evolutionary search, creating a dynamic and symbiotic sam-
pling coupling with optimisation. More specifically, BO first constructs a prior belief using
data collected so far, and defines an acquisition function to guide exploration by leveraging
the uncertainty in the posterior. Then, through evolution, the maximum (minimum) point
of the acquisition function becomes the following sampling point. Finally, the simulation
is executed at the sampling point, and the prior belief is refined as data are observed via
Bayesian posterior updating [33]. This process is repeated until the allowed number of
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simulations is used up [34,35]. Thus, BO was able to complete the optimisation process
with as little sampling as possible [36-38]. Part of our work, therefore, focuses on how to
design (by designing a proper acquisition function) a framework for optimising the general
configuration of wing-sailed autonomous sailing monohulls.

2.3. Reusing High-Fidelity CFD Data by Knowledge Transfer

In sailboat design practice, hydro- or aerodynamic characteristics may follow the same
trend between designs, even if the design parameters are different. In the literature [22],
this phenomenon is described thusly: “the curves, surfaces or hypersurfaces that represent
the forces will share a topological between different designs,”, i.e., “geometry topology is
maintained” and therefore, “data topology is maintained” (Figure 5). Thus, in theory, the
potential connections between designs can be exploited to obtain surrogates fueo and fhydm
for each design with fewer simulations.

0.40
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0.30
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>
© 0.25 1
(=)
G20= —=— Parent Model Data
= New Model Data Points
015 4 5 New Model Derived
T T N T T T N T T T T T o T N 1
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Speed (kt)

Figure 5. The “ Model with different design parameters but the same topology” can be estimated
with fewer data points (data from [22]).

The second aspect of reducing the computational cost is introducing knowledge
transfer techniques [39,40] to extract the intrinsic connection between different designs
and to maximise the reuse of the high fidelity CFD data obtained during the optimisation
process. Knowledge transfer aims to transfer knowledge from the source task to the
target task to address three significant challenges that most traditional ML algorithms face:
insufficient data, incompatible computing capacity and mismatched distribution [41,42].
The main challenge in achieving knowledge transfer is determining whether there is an
essential similarity between the source and target tasks. In the context of the present
problem, we have shown above that this similarity is naturally guaranteed. Although the
collected CFD data cannot be reused directly, certain parts of the data can still be reused
together with a few labelled data in the new design. Therefore, another part of our work is
focused on incorporating knowledge transfer into our optimisation framework to improve
the reusability of CFD simulation data.

3. Optimisation Framework for General Configuration of Wing-Sailed
Autonomous Sailboats

In the proposed framework, the outer loop calls the inner loop to obtain the speed
metric v;_;(j = 1,2) for each design under the external environment of interest, thus finding
the Pareto set on the design space S. Any multi-objective optimisation method such as
MOEA /D [43] or NSGA-II [44] is optional. In this paper, we have chosen the commonly
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used NSGA-II algorithm, which has competitive computational complexity and diversity
in solution [44]. The flowchart is shown in Figure 6.
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Figure 6. The flowchart of the proposed framework. Note: The same colouring scheme is used as
in Figure 1 for comparison.

In the inner loop, the speed evaluations v, ; for each design d under C = {c;} are
obtained in a dual-surrogate process. In the initial stage, we first obtain a small amount
of CFD data on fyreo and fhydm using latin hypercube sampling (LHS) [45]. Then, based
on these data, we construct the rough global kriging surrogate and train the knowledge
transfer surrogate in combination with the historical data from the optimisation process
(thus, the first few designs were evaluated without a knowledge transfer surrogate). In the
update stage, we first construct a weighted acquisition function based on both surrogates
to improve the weak prediction performance of the kriging surrogates due to insufficient
samplings in the initial stage. Thereafter, based on the BO method, the process iteratively
samples based on the acquisition function until the allowed number of samplings is ex-
hausted or the intended accuracy is achieved. Throughout the entire process, all the data
generated are recorded for reuse.

3.1. Initial Stage

As Algorithm 1, since there is no prior performance estimation for a design 4, it is
necessary to sample a predefined number of points to obtain their global characteristics.
Therefore, an initial sampling is performed using the LHS within two searching spaces
for each external condition c;. Separate searching spaces help improve the effectiveness of
sampling. These samples are then first used to construct a crude global kriging surrogate,
which, in contrast to other surrogate models, gives an estimate and a prediction error for the
non-test sample points. The crude kriging surrogate will be used to update the surrogate
during BO.
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However, inadequate sampling may not capture features accurately. Therefore, the
samples obtained from the LHS are used to train the knowledge transfer surrogate fxr
together with the observed data from the CFD simulation library to provide priori in-
formation for optimisation. More specifically, for each design that has been evaluated,
the RBF surrogates are constructed using the observed high-fidelity data d; stored in the
library. When evaluating a new design, a predefined number of the RBF surrogates of the
closest designs (in the design space) are selected and the network parameters are frozen.
These RBFs are then trained as part of the network to obtain the so-called knowledge
transfer surrogate with the LHS samples. The network structure of the knowledge transfer
surrogate is illustrated below in Figure 7.

Algorithm 1 Pseudo code for initial stage

Input Design d, specific external condition ¢;(i = 1,2), number of expensive CFD simulations
allowed FE;;;;. CFD simulation library Lib.
Output fx,; and fxr, new Lib

1. Set searching space SP; for X = [uvs, attitude, action] considering c;(i = 1,2)
2. j=1
//sampling under each external condition separately
3. forj <2do
//sampling to obtain rough global features

4. Generation of % sampling points in the SP; range using LHS.
5. Perform CFD simulation on sampling points X;(i =1,2,..., E gi"" ), obtain

observation Y; including hydrodynamic and aerodynamic observations.

6. Deposit [X;, Y;] into Lib.
7. end for

//Constructing crude kriging surrogate
8.  Construct the Kriging surrogate fKH' by [X;, Vil (i=1,2,...,FE;;)
/fextracting prior information from characteristics of related designs

9. Load RBF;(i = 1,2,...,5) of the 5 most similar designs to d from Lib
10.  Train knowledge transfer surrogate fKT by [X;, Y] (i=1,2,...,FE;;) and RBF;
i=12...,5)

3.2. Update Stage

The pseudo-code for the update stage is shown in Algorithm 2. In the update stage, the
kriging surrogate is alternately updated by Bayesian optimisation until the pre-determined
number of simulations is exhausted. In Bayesian optimisation, the balance between explore
and exploit is achieved by employing the acquisition function. The acquisition function is
essentially a weighted sum of the predicted value (mean) and uncertainty (variance). It is
usually constructed based on strategies such as the probability of improvement (PI) [46],
expected improvement (EI) [47], lower/upper confidence bound (LCB/UCB) [48], etc. In
this paper, the acquisition function value a of state X under ¢; is constructed considering
the optimal value, the predicted value and the uncertainty, as in Equation (8). k1, k2, k3 are
pre-determined weights, Upest, Umean, Vuncertainty, and are dependent on the values below.

a(X,ci) = —vs +k* Z k1 * Opest + k2 * Umean + k3 * Ouncertainty 8
DOF

For each degree of freedom (DOF), considering the uncertainties in aerodynamic and
hydrodynamic forces (moments) will be largely due to the coarseness of the kriging model

in the initial stage, the cumulative sum of ‘Fmo + thdm may have a more considerable
uncertainty and may lead to a lack of sufficient heuristic in the early stages of optimisation.
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Therefore, we add the predicted value of the knowledge transfer surrogate to the acquisition
function to provide a heuristic. Fareo and Fy 4, can be obtained by kriging and knowledge
transfer surrogate. The weight § is set as Equation (9) according to the number of current
and maximum iterations Ny, and Ny,x. The setting ensures that the prior information
from the historical design is fully utilised to improve efficiency in the beginning of the
optimisation without affecting the convergence of the mid and late stages of the process.
Fireo and thdm can be expressed as mean m, uncertainty inv and the upper and lower
boundary as ub and [b, as in Equations (9)—(12).

2% Nyow/ Nmax  if Npow < Nyax /2
B= )
1 else
m = Bxmy,+ (1 —B)*xmrL (10)
inv = B * invy, 11)
Ilb=m—inv/2 (12)
ub =m+inv/2 (13)

° Freeze: RBF surrogate trained for related design d,
. State & Action vector
Top!

ut:
Design variables
Predefined: design similrity |4, .4, |

Freeze Train

Figure 7. Network structure of the knowledge transfer surrogate.

Thus, the vp,st, Vmean, Uuncertainty of

Fareo + thdm‘ are defined in Equations (14)—(20).
While vy,5; represents the percentage of minimum difference between hydrodynamic and
aerodynamic forces (moments), vyeq; characterises the percentage deviation of the best
value from the mean. Both of the above imply exploration (or convergence). Additionally,
Vuncertainty 18 negatively correlated with the deviation between the best and the mean
as a percentage of the uncertainty interval, implying exploration, i.e., global optimality-
seeking performance.

Msum = Mareo + Mhyydro (14)
Ubgym = Ubgreo + ubhydro (15)
lbsum = lbareo + lbhydro (16)

iNVsyum = Ubsum — [bsum (17)
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min (|ubsum|, |1sum| ) if si
‘ if sign (ubsym * 10 =1
vbest — mm( Mgreo |, mhydro g ( s SMM) (18)
else
|msum|
Omean =~ —— (19)
min ( ’mareo 7 [ Mhydro )
1
Ouncertainty = ino (20)
sum

The termination condition for the update stage is convergence for all external environ-
ments ¢; (i = 1,2 in this study). When the termination condition is met, all observations of
the design are saved, and an RBF surrogate for the design is constructed so that it can be

called to form a knowledge transfer surrogate when evaluating incoming designs.

Algorithm 2 Pseudo code for update stage

Input Design d, specific external condition ¢;(i = 1,2), predefined search space SP;,

surrogates fK”‘ and fKT, optimisation history Lib, number of expensive
CFD simulations allowed FE,;,, predefined tolerance §, minimum sampling
interval A.

Output v, ; (i =1,2), new Lib

1. countgj,, =0
2. flag; = 0(i = 1,2) /ftermination identifier
3. while countg;,,, < FE,, do

//sampling under each external condition in turn

4. i = mod(countgy,,2) +1
5. if flag; =1
6. i=mod(i+1,2)+1
7. end if
8. Set searching space SP; for X = [v,, attitude, action] considering c;(i = 1,2)
//observing and saving observations according to the acquisition function
9. Obtain X}, that maximises (X, ¢;), as in Equations (8)-(16), using optimiser.
10. Perform a simulation on Xj,s; and obtain the observation Yj,;.
11. Calculate e, deposit [ Xp,ss, Ypest] into Lib
//determine if this external condition converges
12. if e < ¢ or distance of nearest sample in Lib dis < A do
13. Obtain v, ; € Xpps
14. flagi =1
15. end if
/fupdating kriging surrogate
16. Update fKri with [Xpest, Ypest]
17. countgj,, = countgj,, +1
//determining if all external conditions converges
18. ifall flag; =1
19. break
20. end if

21.  end while
/fextracting and saving characteristics from observations of current design

22.  Train RBF network with all samples of the current design deposited into Lib
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4. Application to the ‘Seagull’ Prototype

The “Seagull’ (Figure 8) was our first autonomous sailboat prototype to verify the gen-
eral configuration, structural durability, hardware reliability, control strategy and power
management and was a testbed for essential functions such as path-following, track-
ing/gybing, and virtual mooring. Sea trials have shown that the capsize resistance of the
original design has not been fully utilised, and therefore there is potential for larger sails
to improve speed performance. Changes to the hull will result in the need to re-arrange
the cabin equipment, whilst modifications to the keel will result in redesigning the sup-
porting equipment, so the general configuration optimisation work is limited to the sails
only. The new sail will have a trapezoidal configuration instead of the original rectangular
configuration, effectively increasing the sail area while lowering the centre of gravity and
the aerodynamic centre under the wind gradient effect.

Figure 8. The “Seagull’ prototype.

4.1. Setup of Design Space, External Condition, and Sampling Space

The design variables are the root chord length RC, taper ratio TR and the span SPAN
of the sail. In order to limit the design variables to a reasonable range and avoid oversized
and overweight sails, variables are given in the form of a range of derived dimension-
less numbers: the sail area-displacement ratio and the (geometric) aspect ratio, as in
Equations (21) and (22). The respective ranges are SA/D € [4, 8]; for the original design,
the sail area was 4, which seems too small. AR € [1,7], because most autonomous sailboats
have wing sails in this range [11]. TR is defined within [0.4, 1]. The sails are mainly made
of balsa wood, their density is set at 120 KG/m?>. The weight of the mast and sail drive
mechanism is accounted for in the hull.

RC % (1+ TR) * SPAN

SA/D = i (21)
2% Vdisg
2% SPAN

AR= — 22

RC * (1+ TR) 22)

From meteorological data, the seasonal wind characteristics of the target area are an
average 5 m/s in spring and 12 m/s in winter. Therefore, the performance at 5m/s TWS
and 150° TWA (downwind, in the inertial coordinate system) and 12 m/s TWS 50° TWA
(upwind) are typical external conditions of interest.

The Froude number is set within [0, 0.4] to ensure that the search space covers the
displacement mode (Fr under 0.35) [49]. The heel angle is limited to [0, 26]° to keep the deck
out of water, even with the heaviest sails in design space. The yaw angle is set to [0, 5]° [50].
The sail angle is set within the optimal value +-20° proposed in the literature [26].

4.2. Setup of CFD Simulation and Optimisation Parameters

The optimisation processes are entirely automated, as shown in Figure 9. The inter-
actions between the software is performed using Matlab scripts, while the parametric 3D
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model of the sail is generated by calling CAESES. CAESES supports the generation of
highly accurate models with different design parameters that can be directly imported into
CFD software. The meshes and CFD simulations are performed with StarCCM+.

l— Specific design

Sampling point assignment

Design variables
MATLAB X =[v,.attitude, action]

}

B CAESES ] !

¥ 4 4
Parametric —_ H H - Model of MATLAB  MATLAB
model of sail \) \2l hulland keel Optimizer  NSGA-Il

STAR-CCM+ STAR-CCM+

| |

Observation Y

MATLAB ¥ = [Faeos Fiyaro]

|

Design metrics

Figure 9. Software interaction for optimisation processes.

As illustrated in Figure 10, the computational domain for the hull and keel is block-
shaped, with a size of 10 x 10 x 20 times L,,. The inlet boundary is positioned 5 x L,
upstream, and the pressure outlet condition is installed 15 x L,, downstream. A no-slip
condition is forced at the hull, and far-field free-slip wall conditions are applied in the
surrounding area. The volume of fluid (VOF) technique is used to model the free surface.
The initial position of the free surface is obtained by interpolating the weight of the design
(hull +keel+ sail) in the hydrostatic curve, which is calculated before the simulation. The
total number of grids is 3.7 million. Fine cells were focused on the free surface and in the
stern-waves domain to accurately capture the characteristics (Figure 11).

A -

- Smooth Wall

..H'L_ I'SLH'

10L,,

¥

Figure 11. Mesh settings.
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Outflow

The wing sail is placed relative to the hull in the same inertial coordinate system.
Considering that there are two different wind conditions (downwind and upwind), two
models are established, with different velocity inlets and pressure outlets. As shown in
Figure 12, the computational domain is 40 times the length, 30 times the height and 30 times
the width of the root chord RC. There were coarse structured cells in the exterior subdomain
and finely structured cells in the subdomain around the sails. In total, 2.8 million cells are
employed (Figure 11). The simulation focuses on the effect of the wind gradient. The inlet
wind speed is defined by field function, according to [51], as in Equation (23):

vu(t) = v10- (hhw> (23)

where v, (1) is the velocity of the wind at height &, vy is the wind velocity at 10 m and « is
the Hellmann exponent.

Outflow Outflow

25¢

Inflow
Inflow
Outflow

+
- ™

Inflow Inflow

Figure 12. Setup of the computational domain of sail downwind (left) and upwind (right).

The optimisation considers the balance of three DOFs: surge, sway, and roll. The
heave is ignored because autonomous sailing monohulls usually operate in displacement
mode with very little hydrodynamic lift. The pitch motion is neglected for the significant
longitudinal moment of inertia. Yaw motion is ignored because the rudder is not considered
in the model, and the rudder can effectively ensure yaw balance. Considering that each
combination of hydrodynamic and aerodynamic simulations takes about 2 h on an Intel
Xeon Platinum 8160 Processor (48 cores), we validate the optimisation progress with only
three generations of a population of size 10. The parameters in the optimisation process are
set as Table 1.

Table 1. Parameters settings in the optimisation process.

FE;; 20 ky 5

FEup 60 ks 1
k 1 A 0.02
3 10 é(each DOF) 10%

4.3. Algorithm Validation

In order to verify the validity of the BO method, we conducted a comparison experi-
ment using the first six designs (without introducing knowledge transfer surrogate) with
the offline surrogate method. Results are obtained by performing LHS sampling with the
same number of samples when the BO converges (the maximum permitted samples are
exhausted, the pre-determined accuracy is achieved or the minimum sampling interval is
satisfied), and by performing CFD simulation to verify the solved equilibrium quality.
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The results (Table 2) show that it is difficult to obtain an acceptable ‘equilibrium
state’ with the offline method for the same number of samples that would allow the BO
to converge without performance prior. At the same time, the quality of the equilibrium
obtained by BO is much better. Therefore, we believe that the BO method effectively
reduces the computational cost while obtaining better performance estimates.

Table 2. Comparison of equilibrium states solved by offline methods and BO.

Case Condition Method vs(m/s) 6 (°) AC) Bs(°) eFX eFY eMX eSUM
RC 1.32m Downwind BO 0.77 0.14 0.90 47.08 3% 6% 4% 13%
SPAN 1.32m Offline 0.78 0.24 0.66 45.00 10% 43% 36% 88%
TR 0.4 Upwind BO 1.15 0.87 143 31.40 4% 4% 2% 10%
itr 70 Offline 0.43 0.1 7.31 20.43 99% 24% 37% 160%
RC 0.70 m Downwind BO 1.67 2.59 0.78 55.02 1% 3% 2% 6%
SPAN 492 m Offline 1.32 3.02 143 56.05 61% 27% 32% 120%
TR 1 Upwind BO 1.70 15.54 4.25 54.80 5% 9% 4% 17%
itr 59 Offline 147 16.59 4.63 32.36 23% 2% 11% 36%
RC 0.77 m Downwind BO 0.81 0.25 0.83 4743 0% 1% 9% 10%
SPAN 1.65m Offline 0.42 0.19 2.59 62.54 167% 33% 187% 387%
TR 1 Upwind BO 1.36 1.62 1.46 31.51 4% 8% 7% 19%
itr 72 Offline 0.75 0.95 4.16 24.11 15% 11% 19% 45%
RC 1.12m Downwind BO 0.91 0.14 0.49 62.24 0% 8% 4% 12%
SPAN 1.30 m Offline 1.00 0.10 0.41 45.00 47% 87% 131% 265%
TR 0.93 Upwind BO 1.24 1.29 1.67 26.69 7% 3% 4% 14%
itr 78 Offline 1.19 0.74 1.69 27.96 11% 0% 74% 86%
RC 0.87 m Downwind BO 1.27 1.18 0.91 46.08 2% 1% 2% 5%
SPAN  3.46m Offline 073 1.72 3.11 6128  107%  107%  200%  414%
TR 0.5 Upwind BO 1.68 5.74 199 30.39 0% 4% 2% 6%
itr 65 Offline  0.98 435 492 1558 3% 59%  33%  95%
RC 0.54 m Downwind BO 1.16 0.49 0.47 62.97 0% 5% 2% 7%
SPAN 3.64 m Offline 0.94 4.42 0.52 62.65 108% 179% 122% 410%
TR 0.53 Upwind BO 1.40 3.31 1.74 33.00 1% 1% 1% 3%
itr 66 Offline 1.59 10.29 1.12 29.42 74% 35% 219% 328%

Downwind =5 m/s TWS @ 150° TWA, Upwind =12 m/s TWS @ 50° TWA.

To verify the validity of the knowledge transfer surrogate, we give the respective
statistics with and without the knowledge transfer surrogate, including the number of
iterations needed to converge and the fitness of the first ten BO iterations, as shown in
Figure 13. The results show that the knowledge transfer surrogate effectively guides the
initial stage of the optimisation process and accelerates convergence.

4.4. Optimisation Results

The Pareto fronts of speed performance for all 30 designs are shown in Figure 14. The
effects of the three design parameters Span, RC, and TR on upwind speed and downwind
speed are shown in Figure 15. The upwind and downwind performance showed a con-
sistent trend. In general, the effect of SPAN on speed performance is the most significant,
which is in line with expectations, as higher sails can gain more power in response to the
wind gradient. Due to the limitations of the maximum sail area, a larger SPAN usually
corresponds to a smaller RC. Theoretically, a larger TR makes better use of the wind but
simultaneously raises the centre of gravity and aerodynamic centre of the sail. The opti-
misation results show that the better performing designs are more concentrated around
TR €[0.6, 0.8]; however, their effect is limited.
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Figure 13. Comparison of statistics with and without introducing the knowledge transfer surro-
gate. Square represents mean.
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Figure 14. Pareto front of designs.

Table 3 compares the performance of the original design and Pareto-optimised designs.
The results show that the optimisation frame effectively improves the speed performance
of the original design within the design constraints, making more efficient use of the
recovery moment of the sailboat while ensuring that the heeling angle does not exceed the
permissible value.
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Figure 15. The influence of each of the two design variables on the optimisation objectives.

Table 3. Optimisation results.

Design RC (m) SPAN (m) TR Condition vs(m/s) 6(°) A() Bs(°)
Origin 0.77 1.60 1.00 Downwind 0.81 0.25 0.83 47.43
Upwind 1.36 1.62 1.46 31.51

Pareto #1 0.81 5.15 0.51 Downwind 1.67 1.70 0.52 63.81
Upwind 1.98 15.23 2.48 28.45

Pareto #2 0.79 493 0.78 Downwind 1.65 3.09 0.95 48.02
Upwind 211 17.55 2.64 33.00

Pareto #3 0.80 491 0.7 Downwind 1.62 2.73 0.89 50.09
Upwind 2.13 17.62 2.44 32.11

5. Closing Remarks and Future Work

Autonomous sailboat designs are often mission scenario-based, non-standard ad hoc
tasks. The lack of design benchmarks and prior performance predictions has resulted in an
unacceptable number of samples required to apply an offline surrogate-based simulation-
driven design framework. In order to improve the speed performance of autonomous
sailboats and hence their efficiency when conducting ocean observations, this paper pro-
vides a simulation-driven design framework that combines Bayesian optimisation and
knowledge transfer. BO can effectively focus the sampling on the region of interest as
much as possible without performance prior, and the introduction of knowledge transfer
allows the data from the optimisation process to be reused to provide a priori information
for subsequent designs. Simulations demonstrate the effectiveness of this method and its
superiority over traditional offline surrogate methods. We have also used the proposed
method to optimise our prototype “Seagull” sail with specified design parameters and heel-
ing constraints, thereby significantly improving the speed performance (although “speed
performance” in this paper can only be used as a qualitative description of the design). In
this paper, we have only considered three DOFs and used StarCCM+ as the solver; however,
if the designer has more design resources, more degrees of freedom and more delicate CFD
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settings can be used to obtain more accurate results. Similarly, less accurate solvers can be
used to obtain faster, trend-based conclusions.

This framework can facilitate the comparison and optimisation of designs considering
the coupling of autonomous sailboat design with external conditions. In the future, we
will use this framework to investigate the combination of hydrofoils and autonomous
sailing boats. The hydrofoil can provide more lift (and recovery moment) at high speeds,
which is expected to alleviate the conflict between the “speed—overturning resistance” of
autonomous sailing boats.
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