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Abstract

Abstract

In recent years, there has been a growing demand for improved ocean observation
capabilities due to the development of ocean big data technology and the expansion of
marine scientific research into deep and distant seas. Autonomous sailboats, as wind-
powered ocean observation platforms, have emerged as a powerful complement to
existing systems. However, the design and optimisation of autonomous sailboats have
received relatively little research attention compared to control methods. As the design
of autonomous sailboats dramatically affects their performance, preliminary design and
optimisation significantly limit their speed performance, reducing ocean observation
efficiency and area passability. To address this issue, this thesis, based on the project
"New Hydrofoil Autonomous Sailboat" (Y8K7080702), conducts systematic research
to improve the speed of autonomous sailboats. The goal is to provide a theoretical basis
and technical guidance for developing and enhancing these platforms. The main
contributions of this thesis can be summarised as follows:

1. Systematic review and analysis of autonomous sailboat designs: The thesis
reviews and analyses the designs in the context of ocean observation requirements. It
identifies the speed as the primary limitation of the current platform, which is attributed
to its susceptibility to capsizing. The reasons behind the conflict between speed and
overturning resistance are thoroughly analysed, along with the challenges designers
face in achieving an optimal balance. Two countermeasures are proposed to overcome
challenges: using computational fluid dynamics simulation and simulation-driven
design techniques to find the optimal trade-off or enhancing the overturning resistance's
environmental adaptability.

2. Quantitative evaluation method for autonomous sailboat speed: Considering the
significant design space and lack of prior performance estimates for autonomous
sailboats, the thesis proposes a speed quantification evaluation method based on

computational fluid dynamics simulation and an optimisation solver. The introduction



Research on Design and Optimization Methods for the Speed Performance of Autonomous Sailboats

of computational fluid dynamics simulation enables the evaluation of any autonomous
sailboat design. An optimised genetic algorithm solver and an optimisation strategy
based on neighbourhood information are presented to enhance the evaluation accuracy
and computational efficiency. This research provides an effective method for comparing
designs and is a basis for optimising autonomous sailboat design.

3. Design method for speed optimisation of autonomous sailboats: The thesis
proposes a simulation-driven design method to address the need for a systematic
approach to autonomous sailboat design. This approach tackles the challenge of
sampling the vast design space without prior performance estimation by incorporating
Bayesian optimisation and knowledge transfer techniques. The research offers a
systematic and quantitative approach to autonomous sailboat design, enabling the
identification of the optimal trade-off between speed and overturning resistance.

4. Speed optimisation of autonomous sailboats based on stabilising hydrofoils: For
enhancing the environmental adaptability of autonomous sailboats and mitigating the
trade-off between overturning resistance and speed, the research introduces various
environmental adaptive mechanisms for dynamic overturning resistance. The passive
hydrofoil is chosen as the stabilising device, and a specific hydrofoil solution is
designed. Hydrodynamic simulations explore hydrofoils' stability, drag, and speed
enhancement effects with different aspect ratios. This research validates the effect of
stabilising hydrofoils in the speed enhancement of autonomous sailboats and provides
design information and technical insights for realising hydrofoil-assist autonomous

sailboats.

Key Words: Autonomous Sailboat, General Design, Velocity Prediction Program,
Simulation Driven Design, Hydrofoils
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Figure 1-5 Autonomous sailboat ‘Datamaran’ (0]
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Figure 1-6 Submaran S10 that can be submerged with the sail folded “!
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Figure 1-7 Observed sea surface temperature and CO2 fluxes from Saildrone 394
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Figure 1-8 ‘Saildrone’ series of autonomous boats*’!
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Figure 1-9 Square-rigged sailboat and fore-and-aft rigged sailboat
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Figure 1-11 Fore-and-aft rigged sailboat sailing in downwind condition
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Figure 1-12 Mechanisms of upwind sailing on fore-and-aft rigged sailboat
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Figure 1-13 Components of a fore-and-aft rigged sailboat
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Figure 1-20 Different ways to improve overturning resistance
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Figure 1-22 General configuration optimisation framework for a typical sailboat
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®2-1 ETEENBWIA B4

Table 2-1 Statistics for existing designs based on dimensionless numbers

SR Fhi Mi(m)  HikE(kg) LDR L/B SA/D B/D
[33] 1.0 4.5 6.2 4.2 134
[32.34] Atlantist 7.2 150 13.6 2.4 275 50%
[58.61] AROO 15 12 6.6 45 29%
[115] Robbe Atlantis 14 175 5.3 4.1 12.7 63%
[95.116] FASt 2.5 50 6.8 3.7 27.3 40%
98] IBOAT 2.4 35 7.3 6.0 14.0 40%
[o7.114117] - WASP 4.2 275 6.5 5.3 10.6 82%
1671 Avalont 4.0 440 5.2 2.8 6.9 36%
1571 A-Tirma G2 2.0 43 5.7 4.1 1.9
[118] AAS Endurance 3.8 300 5.6 10.0 20%
[99] MOOP 0.7 4 4.5 0.3
[119] FHsailbot 15 15 6.2 4.6 10.7
[119] Saudade 1.1 9 5.4 4.3 12.0

Breizh Spiritl 15 13 6.4 4.3 155
[60] Breizh Spirit2 2.3 55 6.0 2.9 13.8

Breizh Spirit3 1.7 13 7.2 3.8 13.6
iy ASV Roboat 3.7 300 5.6 12.0 20%
69 SOA 1.9 52.2 5.0 5.6 13.6
[69] W2H 1.9 44 5.2 3.9 144
[64.120] Marius 2 70 4.9 25 171 50%
[121] A-Tirma 1 4.3 6.1 4.1 23.1
(21 SailBuoy 2 60 5.1 4.0 6.5
6] ARRTOO Prototype* 1.95 295 6.3 4.1
[18.22] Saildrone; 7 750 7.7 2.7 6.1
[122] Zarco ASV*t 2.5 50 6.8
[25] Sea Quester 1.9 25.5 6.6 6.5 30.8 43%
[24] MaxiMOOP 1.2 23 4.2 3.4 12.4
AL Seagull 3.45 155 6.4 2.9 4.1 20%
[123] 1.9 20 7.0 9.5 15%
[124] 15 15 6.1 3.2 18.9
[76] SOTAB-II 2.6 150 5.0 35 2.0 20%
[125] 1 6 5.5 7.3 5%
[6566.126]  ASPire 4.2 370 5.8 4.0 47%
(0] Maribot Vane 4.2 280 6.4 5.3 7.0
(7l Submaran S10* 4.14 127 8.2

Datamaran*t 25 85 5.7 15
[36] Breizh Spirit DCNS 1.40 13 6.0 25

Snoopy Sloop 8 1.20 14 5.0 4.3

Snoopy Sloop 11 1.33 14.6 5.4 4.6

Erwan 1 3.65 300 55 4.2

ABoat Time 1.20 18 4.6 34

That'll do 1.40 10 6.5 3.0

Gortobot v3 1.81 8.1 9.0 3.5

Breizh Tigresse 1.44 28 4.7 2.4

OpenTransat (2016) 2.36 45 6.6 3.3

OpenTransat (2019) 2.00 47 5.5 6.3

Gortobot V2 0.79 5.4 4.5 25

Phil's Boat 0.85 7 4.4 3.3

That'll Do Two 1.40 10 6.5 18

Sealeon 1.80 50 4.9 3.6

EC-Crossing 1.05 10 49 4.8

Brave Puffin 1.80 22 6.4 9.0

Bearly Assailable 1.20 26 4.1 3.3

Endeavour 1.05 10 49 4.8
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Table 2-1 Statistics for existing designs based on dimensionless numbers(continued)

SCHR A=) fiK(m)  HikE(kg) LDR L/B_ SAD B/D
Pinta 2.95 450 5.6 25
[46] Saildrone Surveyorj 22 12700 9.4 7.5
HE:* -BRIREE Gy SR § R A
SA/D = Sail area _ LDR- Waterline length .
Volume of displacement§ Volume of displacement5
4% LB o Bl sA/D

37% 36%
LDR N B/D

25% /\ 24%

12% 12%
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Figure 2-1 Frequency distribution histograms of dimensionless numbers for existing designs
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Figure 2-4 The Antarctic specialised version of Saildronel’+13
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Figure 2-5 Length and displacement statistics of selected autonomous sailboats
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Table 2-2 Design reference statistics of selected autonomous sailboats
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KK 3N 1) 523 TRy, 7 R R K it 5K 3l 7947 BT B o AL EAT 22
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5 45 (1) BT R B 7K 566 B TR T VRAS 1 7 52 B 5t LAWK o AEIX
LT, BT HERE AR 52 A IER . CFD i SUsA K AR, A
NI S R FIENE IR, #l CFD 30 mT LA 2108 v S 500 14 e 1 #2852 0
AT ZE A EE R IR, B AW T P RE 3 N BRI AE R b, Hoi
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PR B8 71 1R LR B S BT - 15 LIRS 1 1 H(SBD) L2 —FhE F1H AL
AT B 7, BT RN BEEOR(EA S 2 CED 417 5 )R Fi AN
PEAS BT TR, DMEXS BT BT LA AN e o SR FH 07 B AK BN HOR AT AKX
Fh— kP ) A A R BT CFD Wit PR DAL R R 5 AR BN 15e vt m] BALA
BRI BCASS ORI BT 2% (B AT 2 S R R AEAR, Finli& & o NI A it
TR PR — IR BT SS . R1T, B RE R NSt 2 K, HMELLIR1FSe 50
PEREALTEBRE i, BT BRBN B THE R CFD 314575 80 ) MK 3l i AL i
AIRE G “4EfE " FEOHEE TR EXELUKZ .

Q)R =B NAG PR Be 1 A& Ve, DL SRR M Re 5 P s
CEVALIENP e VAR

Jo WA BB 7 e 77 ik = 7E PR 51 PR AR T 1) PR AR ATL i) RO PR 3 8 e
73, X2 o AWM AL M e 5 B s 70 TR SR B0 SZ HOAR IR . BRI £ Lt
TE NI B A — LSS RE 8% O W S5 AF AL, LL 0 Datamaran 1) 3 2 H 3k 1F
F 45K 2-6)5% Submaran (AT URERPL(E 2-7), EiE, LIRPIFFEEE S 2,
P40 N IR 2R 4808 77, BRI 5 HUl 2 PuiiiE g8 /) R ALY, SEA
At & — M B RRERS I . o NN IR 7R 2L 2 RE SRR IR B Sl A U
[P ge /1 (G E s fiatE). — B NIRAR R BT B /0 nT LARE A 5550
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& 2- 6 Datamaran [ =3 K IE R4

Figure 2-6 Self-righting system on Datamaran!*’]
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2-7 Submaran S10 f) RIS
Figure 2-7 The retractable wing sail of Submaran S10"]
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5% 3 & TAWMBTHRSUE RPN T AR T

3.1 518

J6 N WLAG LI M e P PAN 2 #EAT e Re A AR 2t . H AT, W 1.4.1
A SRIUIRANZE — F RN A ik, K2 500 NI BT s 1 e vF O /2 18
IR A NI B T FE 7 (Velocity Prediction Program, VPP RSZIIAT. A A
WA VPP £ N 176 NI ATOE P Be AL VPAN I A2 AE — € A e PE . 5k,
A NWAG VPP KB M S IR ZHORA T2 AN, &M T AN
MBI G R B R 2 . R, A ANMATE VPP 22 R HPERE 2 WA S2 MK
)3 TR P IR SR A%, 2 FH T HE DASRAS M e S 50 At v 1 T8 N IR IR+ 233 e
KIWRZE N T R BB A @, AT H —Fh B T+ SR AA ) %% (Computational
Fluid Dynamics, CFD){Jj SLAMILAL SR g 2 10 o N IR A AFOe 14 B AL PR T35 DA
AT NIRRT A ) AR AL 7V, N SR B M Re LA AR SR (At

AT 2 TR AR T TR T NI PR R VEAN TV B 3 T UREOR
TUREEFENL RS S7 FOR B UE R R PEM IR S AR 4TINS
FHORHE IR AR SE B 5 P45 20 B M B TR0 R 6T LG o 56 5 0 AR B AL N AR 5 45
Wit 7 R 5139,

3.2 EFHEREADZHERMBMA KR T AMARATE TN F77E

Wl 3-1 fr7, VPP & —F FH LAAS BR AR HTE 1 R v E O AR . & DAY R
AN SRR (LRGSR AR E T i, R IR B A S8l R A 5k
RN S B B B3z ), i PAT R g2 R K8 1 528 iR £ 3
FH 2147 R B2 A (steady-state),  FERFRRAS BT BRI HLIE . LS AEfi EAE iz
THEEAN T4 NG DL T B e A SR A 2 i o

T AETG NI R = IEFC 7K 3 /5 23 S8 i Y . Hsh = 14 R st B fil v 1
18 0L SN e NIRRT H TR E R = AT, ARSI T —F03E T CFD
FLACAL SR A A 0 T NIRAETUEPE RE VAN T 15(B 3-2). A7 CFD i &
KX S AL G2 AR R B AR e B AT KB SIS S8 . 1k
ks SR, BERPTRR CFD 17 B “4EREicHE”, AR =S0K3) )
5253 SRR SRR A T ARSI 256 o SRS 2 o BT B e NI HE R L/,
INFBVERE K, O T SRR RO AR R, AR TTVECRH T Y H T (4-
degree of freedom, 4-DOF) V-4 5 2, ZME 1 e UM . A 57 R T 5itfE
5% (Genetic Algorithm, GA)Kf#E#S. HARBAE T ET I GA Kig g A8
TR, B RIFNERIFIIERE. N 7AW PG A RIS 42
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SRAGKGRE, ARSCXTFRHE GA SKRIGE AT T 0 o BRAMARSCER B T —FhaIHT 2 T
LR35 S P AL S RE (Neighbourhood information-based optimisation, NIBO), LK)
FHAE 2R 28 (1R 5 R B[R] 32 X ] ) 22 8] 1 AR B A s Wi Sl A R i — 2B 3 v i
RS E B VIR o
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| veomomwm |
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Figure 3-1 Components of the velocity prediction programme
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Figure 3-2 The schematic of the proposed method

3.2.1 ETHERBHEMENTESIERE

Ik 3-3 P, € XAERRE SN R UG v MR ) P AL, BdE
P v, » LR 0 AW A )RR R (LA g AIRERE SR B,)o 32 XIS JR
AL T L CG A T-A8H58 2R (1 3-4): BARAASR RAIB L AL bR 2 o FLA 34 A8 AR
FH) x T RO AA T N L IR AT, Bhlon, tat, AT ver FRic. fHiPE 5 x HhiymHE
[ET718), z BOE 5, BAX, v, zhRic. DR, MR AR ZR 0] R o,
RERTT T, KT MRS WL AEAAAR 2R 2 TR AR ] 3R 3-1 1A (G DA
#o
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B 3-3 7EAFE SN TR T RIS I X

Figure 3-3 Definition of a state under specific external conditions

B 3-4 ZHAIRR

Figure 3-4 Reference frames

R 3-1 TRAFBHRFEHRR

Table 3-1 Transformation matrices between subsystems

M0 £ I Cap
Flow direction Inertial Ciai = Eyan(7)
True wind direction Inertial Cuwzi = Eyaw(7+ )
Inertial Hull-fixed Cizn = Eyaw(4) - Eron (6)
Hull-fixed Sail chord Chas = Eyaw (/)
Hull-fixed Rudder chord Char = Eyaw(5;)
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cosA —sini 0 cosp 0 sing 1 0 0
Eyaw(A) =|sin2 cosA O|,Epen(@)=| 0 1 0 [E, (@)=[0 cosd -sing| (3.1)
0 0 1 —sinp 0 cosg 0 sing cosd

(1)7KBN JTFI 2 S 30 7 A

VPP HERE B AL VPO AER PEAE AR R B2 R T2 SURIK Bl 77 22 A 7 ) e
B PEMO T NI AA AN e i 55 “hrite” BeitJE 3 AR AR A CFD
17 FR AR TN B HEAT A

AR e & 1K) 7K B 73 ) s 4 B SL A ARER LA £ (hull line,v,, 0, 4) 75 21
[F . Fy m]= f(hullline,vy,0,2) (3.2)

.[H:’ ﬁlegﬁéﬁ?/%i%j] Flon_hk ;FD Flat_hk ﬂ U\@ﬁﬁf}ﬁ%%ﬁﬁi Ci2h fﬁE‘@J

[Fion s Fiat_nk:01=[F nc, Fy_nk:01-Cizp (3.3)

TNMASHIREIE R 5 “Frit” SERTRIRAEML. A 7 k2> CFD FRFE4ERE (2
WhnREAE N — N BN, CFD WERAEFEFELERDR N 3 B5mE] 4), ASCRHE
56 N FORSRAZ N BIIK B F7 0 FEM T 21 RBE D #E B e R 4E F o0y CER. A =X
34, HTREWTY, FRIRANEZRINAZ 095142, ZEEFFTIZE),
AI(3.5) AT DL R R . A, MERSOR R S A SRIE I, WA
X3.6) M2, F ARG IHERR, HAbF KRR FATH Whicker Al
Fehlne 3 Hi 1) 22 208 5E o

Vv, =0.95-v, -C,p, . 3.4)
Ve =1 (Vg Vry ,0) || (35)
aCLek
o, —tan () —a, - oay_ (3.6)
' Vig R Y ARy ’
L:l.p.VZ.S.aCA.ar (3.7)
2 oa,
Crer _ 5.7-AR,, (3.9)
Oct, AR;;
1.8+cosA; Lt
cos™ A;
AR, =2-AR, (3.9)

HE MR SHAT UL 2 3(3.10-3.12)F 2, Jei A 5L 2 hi ek
BT B e,

Vk = Vs 'Cv2h (310)
1| Viy

o =tan [—J (3.11)
ka
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2-(h +To)

) Cr ex T Ctip
2

FEr= A B BE 53 SR AFEAREE /7 - 15 5 BH 1 REUS B 800 71 R EUP)F
7 RAE RS, fna st 3.13, TRIRFE /) R BT LUEE ITTC 1957 E 1A AR
EX (g

AR, (3.12)

(acLe ajz

—_=. 4

p=l.,v2.s 1% 1o, 0075 - 1+2~£+60-££] (3.13)
2 7 AR (log(Re)-2) ¢ ¢

e BRI R R ERRGE R AR UREBKRR ERIEGY R,
Pl Ry r ATHIAIG.14) (3. 15) 2]

[Fx_r' I:y_r , O] = [—D,—L~ Sign(a),O]- Eyaw(_a) 'Crzi (3 14)
[Flon_r ) Flat_r10] = [_Dr_l-' sign(a),O]- Eyaw(_a) 'Cr2h (3 15)

Tow IS 2, 52 SR n] LA FE 77 R 5L £, (profile, «, Re, AR) FlI T
JIZHY £, (profile,a, Re, AR) TR KR . ME—IIX 2, BIMEEGHIELE M, M
XTI K U AZ flat , reef , A1 twist o B 2SR50 J7 2R A AT DL A28 6 A5 A
33, U Jackson FEAY Y, Fossati A5 174, TR A AL /)N 2 5% LU 1) 4 5 A B A
Bl R IR AR S 3REL, A5k CFD 15 BSR4/ S 3 )i . 43/35)
JIVEFH BEMAEAL T BERT 2 25% M52 K MIILAZ 719 0(CE) b 1= R B
KN MR v T LURIE A R G.16)1HE, ZgFiiiEsh, #niEEy nf LA
ARGINE R B o Al LB ARGI8)H . FH AR AR LA 5 AR
(3.19)F1(3.20)Hf 5E .

V=V, -Cys +Vs -Cyos (3.16)
V:| (vx,vy,O)" (3.17)
o —tan? H (3.18)
L:%~p-V2~S~ f_(profile, o, Re, AR) (3.19)
D= %-p~V2 .S - f5(profile, o, Re, AR) (3.20)

W EMAEBIESERTWEGEF . M F, , URESKSHE R TIR
Flon_s ﬂ] I:Iat_s m EE‘Fﬁ’fﬁ“ilJ

[Fx_s* Fy_s’o] =[-D,-Lsign(x),0]- Eyaw(_a) Coai (321)
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[Flon_s' Fat_s 0]=[-D,-L-sign(a),0]- Eyaw(_a) “Co2n (3.22)
PISMEA BRI 58, B bl R 25 AR I MMA LR 80 Jy . M mT DLk

TN —A BB /NEZ 3R, HHE W TR AM . Kk, M RRF
ST LABE AT . R Fujiwara & R 2s 580 2504

Fin_ta =PV 2 Ar Cin 1o (3.23)
Fia 1 =5 PV A Cia o (3.24)
M o =PV Co A% I Ly (3.25)
[Fy P01 =[Fen_a F_a01-Ci (3.26)

(2)7 57 4-DOF ~F4fi )7 F2

MR P AR S 75 2238 2 2 > DOF -1 7 12 . B4~ DOF “PHT N T R4 1%
JIFRAE T — AN H G, FERE R WL RS AR & O¢ R 0 T B TE ARG,
BT IHAHEE AN, P AERIKB T AR AN, 9 1 AETHSR S R BE AR i M TR LS
AT, DR 2B AR AN TP AT . A 0(3.27-3.30)45 H T DU E H P A O AR (1 3-
5). CE 1 CER B A T AT 5% KM 25%4b o ] BE 7 70 F Eliasson 25 A2 H
v, MR TR D FER S AN CG, REE
GZ = f(mass,CG, hull line) A] H i 7K J1 84435145

Fe=F m+F s+F r+F pa =0 (3.27)
F,=F w+F s+F (+F =0 (3.28)
My =Fat_nk “Zoir + Fat s Zce + Fat_r " Zcer *M pa +A-GZ =0 (3.29)
M, =Fat_nk 1€08(0) - Xcir + Far_s -€08(0) - Xcg + Fig_r +€08(0) - Xcer =0 (3.30)

B 3-5 BERAWALE BER TR R E

Figure 3-5 Schematic diagrams of roll and yaw balance
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3.2.2 KA RE IR R IRTS K AR
RARAS AL 5 R B E BOHAEAT E SN2 N B R — s, A

SIS (038 2 AN T NUSHE IZ AP S 264 T IR RES 2, B
F, =0
F, =0
V5, 4,0, B, B;) = argmax v, s. t. (3.31)
Vg, 4,0, M, =0
M, =0

XTI AR AR R R, TR R AT SR R CE O = R TR e
Tt RSV N R . B, FATRH T — M 5RE) GA KK
XA LA S(3.32) M3l LS BR B F () BOPEAL )
argmin F(x) = g(x)+ f(x) (3.32)

H x=(,, 2,0.8.6), 90)=-v,, f(x)=p-Y e (x), e RTEKEIMET

MAEAWE [ R, G AERRT. SURERT p iR
1 (0 % 900 Rl F00 O BURPE. 723X ANE A6 B ity , 3 /2 % DOF - J7 2
(£ =0 AMEIRIILIT, 72, S HOAS 2 SR HRA ] M7 9 24 270
P00 < & Yo X FAE AT, A RE AR — 1 A7 7 L A7 — AN TR o AL,

7B PRI T T, SRAE—AVHE S IR, (R — /> 9 4F 1)
WREANEER. T VPP, —AEBOTRE, HEE AR, bR
e EBR I — 30470904 0 3.32) BIABE] 100, BRTTEAMREI Foo o BEUE, AR
T AN R G UHUB G GA SR AR S ACHR R H I %2 () 3-6). 12 BA F o)
SIS R BCHEAT ORI TR0 S O 200 BB/, L £ o) s g
HEAT— SRS 6 R A B M0 24 TR T T

DURIBR R SRR T — ELRT A AR AS A2 T 1 0 5 3L P47 ik
FRMRBAE 23T, FAREN T —A R, v S BALT T ok, I TR
DUR AR R0 . B RL R SR N REEAT 3-5 A RPRAL( F 93BT
RERIERAL), HEAT— VR MBERAL(L 00 T 3T ML BB ), S S B £
R AT TR 7L 3 S QA 2 519 35 e 25
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Figure 3-6 Schematic of the end-place enhancement GA solver

3.2.3 RAETHMEE 2RI RIS HE RS EL &K #E

LA ) VPP HR 250 AN [E] PR A (— A € I E RGE TWS, BEXA TWA)HEAT
MSLRAR . SR, SCHRESOFE HY, X T m gl i) i, RS2 I TR A SR 2
JUP A RER B 2B RE R, WE 1-19 s, 2REREIAESR
T £ R sh, MmEsk b, MHICIRES IR A% — SRR S . ik
(1 J5 AbFR 7 VA A 22 O SRS B BOd i 0 & 3 AT P o JiTE e KR IG mn
THE AR, MG 5NN T BUETS B AER TR M7 5, 72 R AR ST ARAS I
PAME FH Bt GA SKREASRIE mid FE el (B2, TESRHRE, RaElsl
PRI S5 T 2 X0 SR A2 1 4 JR 48 &R e T B A1 55

EENE BRI AR, ASCEEH T R TARIEAE B B AL(NIBO) Sl , I FHAH DR
(IF] TWS Hi[F] TWA FPRZAS)E ) AR SRR W ST gk — 5 1 s e & Ak
PR I HERRTE . KT B AHE TWA PPIRES, XUBkaE, MUEROZEER, 1 B
AT N % B T . X H A AR TWS HRIRAS, LM TWA K ITEREN i%
I, AR BN . Bk, SRR AT DR A R RS SRR 1 2 2%
(& 3-7): XF T HAME TWA BPRE, MRV TR AR i ARt f
H4 B0 45 T v NAH SRS A5 2R ] X9 ] o T, 482807 1) ] DA A Rt 51 5
PLRRARAR R OIS TR A . 6T A ME TWS BPIRAS, W s Eshiitk, ¥
RS SR A )48 28 25 (AR AR AR IS B AT 4 . R iR g R LR 45 R A
A HEARRE R EEAER, JRIGHEA P B 4. AR PRIE B RE ARk A2 % /)N B8k 21 93
E RSN IRBI, 0] DS B R 2 45 3 . NIBO SRRg s A 7 DOIRES
() AR OGRS T SR A, B S TS e RIS =5 1 VPP & R = R
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Figure 3-7 Schematic of the NIBO Strategy

3.3 “BESS” RUALRMERETEMN

A TR B die th 19 e N IR e s 28 e AR PR 70 vk B AE 20T T8
NGB RIRL IS 57 b, 383X b SR AT 14l SR A 2 i Y (4 75 93 AT
Wik IR TR I TEREVP O A it — 28 AL BE T R A

33.1 “/BESS” T AMBRIRIEFEA

“HERG S FENL(E 3-8) 2 AT I — R AN WLAG, st B —
ERRR M, X—FEHLE X AN EARE . VLS. Reli. 6. ST
GREARDNEEHATIRER . NI, E¥ot Bir 5358 B 1, RS 5RH T 45 A
PEALF B AR MR - B R AR ) AR A R G 4% 1 I e i DAk — 28
ST HpimiaERe /).

B 3-8 T AWLATFENL “IHeRS”

Figure 3-8 Autonomous sailboat prototype "Seagull"
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RIS S AR T B R BN T ARSI, R R iR
IO IE RO o ZARIIA A B AT 4 B, B KON 3420 mm, HEZK = 155kg, X
AN FEREAT VR A S I 4 NBHMTEE SRS, PSR TERRW 2.5 t REMHEE
RSN 4.2 m*1.9 m*1.8 m). MK HPRAERZ AT A2, L/B 4 2.9, LDR
2] 6.4, XMELIE K BARNTAR AT AR A& T ARESNE,  JERfORA BRI AR
T AR AT B2 0% T AR P BH BEAR o MR FINZ 7K B (2R 410 mm, Z7K 105 mm,
IV, A R B TR 2 J7 (R I I G 0 &mr,  [R)B gak2b B TR X6 K BH R
BRI0Y5 G

K 3-2 TAMAERN TS5

Table 3-2 Design variables of prototype components

LS T
A 155  kef VCG 265 mm k811 NACA 63015
Loa 3420  mm Boa 1175 mm Crnax 296 mm Cnin 150  mm
L 3250  mm B 965 mm A 44 ° I 714  mm
D, 410  mm T, 105 mm
A i
vt NACA 0012 k-3t NACA 0012
Crax 745  mm Chnin 745  mm Crax 140 mm Crnin 100 mm
A 0 ° | 1600 mm A 0 ° | 320 mm

225

410
320

3280

3315

& 3-9 bl R~F(mm)

Figure 3-9 Prototype location dimension (mm)

SN A B YRR ARSI, BT AR E R R, EARECN, SAD &)
NALl. FBREIMET I, FWAMDI s AR, #YImEoys2i 745 mm,
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JE& 1600 mm, [ NACA0012 A, KA/ 2 18 2 X8k FE IR AEAE,
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Figure 4-4 The flowchart of the proposed method
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{fifLRE: NSGA-1I
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I I B i) B AR SEVE WL Algorithm 1, B T#ETC NIRMT B RAHE R B 1T d
HICIEAS BB PR RESE I At T, T DAAT 6 B BT RS 2 ) (W A 1A R
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REAE 0 DR KA 1R BE 22 IR B TR AE BT o0 IR DX AT o e, X B REAS 1 S04 FH Rk
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PR R AE BO W) 45 AR A A B35

SR, A5 R RAE AN BE 78 70 R SR 2K 8 T A =80 ) RS 1 4 JR RFAE
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Figure 4-5 Network structure of the knowledge transfer surrogate

Algorithm 1 Pseudo code for initial stage
Input Design d , specific external condition ¢; (i =1,2) , number of expensive CFD simulations

allowed FE;

ini - CFD simulation library Lib.
Output fKri and fKT ,new Lib
1. Setsearching space SB for X =[v,,attitude,action] considering ¢; (i=12)

2. j=1
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//sampling under each external condition separately
3. for j<2 do
//sampling to obtain rough global features

E. .
4, Generation of —™ sampling points in the SP; range using LHS.
. . . . . FE;ni .
5. Perform CFD simulation on sampling points X; (i=12,..., T ), obtain
observation Y; including hydrodynamic and aerodynamic observations.
6. Deposit [ X;,Y;]into Lib.
7.  end for

//constructing crude kriging surrogate

8.  Construct the Kriging surrogate fKri by [ X;,Y;1(i=12,...,FE;)
/lextracting prior information from characteristics of related designs
9. Load RBF, (i=12,...,5) of the 5 most similar designs to d from Lib

10. Train knowledge transfer surrogate fKT by [ X;,Y; ] (i=12,...,FE, ) and RBF

(i=L2,...,5)

Q) EH B

BB B R DA ARRS B 7R AE Algorithm 2 H . FEREHTIT B, o B4 AEE T I
AL BEAT AR B, B RIS 07 E R ERE R . 78 DUt i f IR R
(explore) FS S5 (exploit). ] (1)1 47 A2 38 ik SR F KA R SR SEIIL IR o SR A R BI0AS I
b AR TIAE AN 2 IR . e il H T Probability of Improvement(PT)741,
Expected Improvement(EI)[*"®!, Lower/Upper Confidence Bound(LCB/UCB)7614%: 5
WEFEE . EARSCH, FEREIUE . PIIMEMAE M, W 7 anaE4.8)HR
FERREL. o JPIRAS X FEAMF SR ¢ THIMARL o Ky, Ky, ks 7EHE S Voest s Vinean  Vancertainty
BT AU U

a(X ,Ci) =—Vg+ k- Z I(1 “Vpest T I(2 “Vmean T k3 'Vuncertainty (48)
DOF

SFTAEAS 1 (DOF), 2 5 SRR 70 HL S R AR AL () K 3y 3 R 2 <3 7
FIOTHEY AT REAEAE RO TRENE, HeB T | Fugeo + Fryaro | 7T BEAFTE TR IO AN SE
P, FERERI RIS SEARALERZ B R M o RILAE SRR B B I T AT A%
B TR RAR R R e Faeo 1 Foygro 7T DAL 5 HEL 4 AR BT S0 R RS AR 2T
5, BUE pHHT BT RAEBN g FURICRRERN . WA (4.9). IXFERIB
BRAE T 7EARAL IR, 3 S5 55 e F S 35 S8 AT L AR I 35 WL
P SRR IR L3R T 5 L < A S TS A v A o, Tkl
BRI 2 XA FRE T o Fao 1 Foyaro 7T B 150 (4.10-4.13) 1 m
At inv, . T ub, Ib RN
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2: Nnow/Nmax if Nnow < Nmax 12
ﬂ:{ 1 else (4.9)
m= My + 1= B)-mp. (4.10)
inv=g-inv, (4.11)
lb=m-inv/2 (4.12)
ub=m+inv/2 (4.13)

BRI | Fareo + Fiyaro | B9 Voest» Vinean  Vuncertainty A5 2(4.14-4.20) BT 718 o HeHP v o R7RIK
BN IIEITH) BN ZEAERTE D, Ve FRFIKBN 1B ) B ARE 5 FAME
TZI A 53 o X E EBRAEUC SRR o Vyncertainy -3 50 EEABE AN 2E04H 2 1] ) i 22
AN E X E 2 L R ARG, EMERERAE S, S ReRmmmmirtae.

Msum = Mareo + Mhydro (4.14)
UBgym = UDjreq + Ubygr (4.15)
1Dy, = 1bare0 + 1Bhygro (4.16)
NV = Ubgm — 0gym (4.17)

min (| ubg, |, | Ogym |)

if sign (ubg,y, -10g,,) =1

Voest = min (| My |, | Mhydro 1) (4]8)
0 else
| Mym |
Viean = — (4.19)
e min (l Mareo |: | mhydro |)
1
Vuncertainty = F (420)

sum

S B & 1 25 A AL P AT SN S o (FEAHIE e P i =1,2) D AR 49
AEZIESEAERT, BRI PR IE B ORAE, IR SR —4> RBF AU, DUEAE
PRARET A BTN AT DL A B R s — AN R A AR

Algorithm 2 Pseudo code for update stage

Input Design d , specific external condition ¢; (i =1,2) , predefined search space SB,, surrogates

A A

fxi and fy; , optimisation history Lib, number of expensive CFD simulations allowed

FE,p, predefined tolerance & , minimum sampling interval A.

Output v, ; (i=12),new Lib
1. countg, =0

flag; =0 (i=12) //termination identifier

N

3. while countg, <FE,, do

//sampling under each external condition in turn

e

i =mod (countg,,2) +1
if flag; =1

o
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6. i=mod(i+12)+1
end if
Set searching space SB for X =[v;,attitude, action] considering ¢; (i =12)

/observing and saving observations according to the acquisition function

9. Obtain X, that maximises a(X,¢;), as in Equations (8)—(16), using optimiser.
10. Perform a simulation on X, and obtain the observation Yy .
11 Calculate €, deposit [ Xpegt, Ypest ] into  Lib
//determine if this external condition converges
12. if e<d ordistance of nearest sample in Lib dis <A do
13. Obtain Vg j € Xpeqt
14. flag; =1
15. end if

/fupdating kriging surrogate
16. Update fi; with [ Xpes: Yot ]

17. count;,, = countg;,, +1

//determining if all external conditions converges

18. ifall flag, =1
19. break
20. end if

21. end while
/lextracting and saving characteristics from observations of current design

22. Train RBF network with all samples of the current design deposited into Lib

4.3 mEAURRMLE BES” DAEEMK

F=i EuRERY, £ CRNSS T FURRTHT, P& R I Ba R 2 e )
MR BRI, FEAT , JRATEL “HERSS 7 9, N FrE R iExS “ RS
57 B ARG E DR vl AT A st DLt D iR s TR R R . JEXS BT
S 7 ik DU AR 8 0 AT 3 3 BEAT BRIE

4.3.1 AT REERK RGeS0

FEHET R RRC B ORI L2 0, FRATTTRS— AN ROSRIE U, BDAR Ak &
SR U AR L, TR B O S S 05 2 T AR S A A
B, TR, IS BT G TR T AL, Rk
b H 4 G5 I HEAT B o A MR SR BT L B 1R 2 A AT L,
75 5 LA S8 AT DR A S0 X3 6 B O T %080 7 o
i

B R INRIA 7% K(RC), HEFELL(TRYFUE K (SPAN). 1A X (4.21)H1
(4227, N TAS B AR 2 AN BT P, G L i
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AR B I 29 R A A AT 2R R JE B AN A —— WL A/A2 42 EL(SA/D) A 5% L (AR) I TE
A&t BT EBHRIR AR LEZ 4, T SERHAT RILE R EI B /D,
FIT AR TR AR /A2 % LU IR G 1 4 5 D[4, 8]0 TR 92 ELIKVE B w1, 7], RN
e R Z B0 NI L R s L g BRI, HERE LEIVE B 2 [0.4, 1], IR 2R
HI AR B, 35 2T 120 kg/m®, HEATAIIRLAKZN 3% B A B B Al B &

_ 2-SPAN
RC-(1+TR)

(4.21)

RC-(1+TR)-SPAN
2

2-Vyi3

MWSGEHRRE, HIREERZET R RHERE T PR 5 KA, &
=12 KA. Bk, 5 oK/ 150 BEOBUR, FEMMEARER & )A 12 K/AP 50 FEGE
JR) T P BB 78 SR BRI L7 X g %A

HRTEEEWT, FRTEFEREHKEBLTHAT, L% Fr b
W E NTE[0, 0.46170 Fl A s BT 4 FR B 7E[0, 26°], DRk BPAEAd A £ 52 vt () v
I IR AR AN K ImfL A B 150E [0,10]. IRABE I E N E— BB H K
e AFAE +20° Y Py L8,

&l 4-6 Frow, iAot id #2256 4 3 ah i, B2 8] 122 Bis i Matlab
ABEAT, WS EAN=ERREE HH CAESES A /. CAESES A LUEREA
ARSI SR FERY, SRR A UM A B2 5 N CFD 3. MH%
%15 A1 CFD 1jj 5 A2 H StarCCM+iE4T [

&l 4-7 Fios, AERACEE R R PUIRE), K i miJ8 20x10%10 £%
Lop o B EERE LA T B3 5 05 L, b, 2 B TR E 15 £ L, b fEREAA o
HIPAT T I A% 2, T2 JA] [ X 4R F I 1) B B B SR F . IR FR(VOF)#
ARG FH R4 B E R T . I W86 7 B 18 i 78 7 BT d (I A i 102 ih 28
R EEGEEAE. RE . MRS THESE. PSR 370 . T HE
B SR TR REAE ,  FRATIAE B b V0 I RO 2 05 DX sk A T A 5 (P 4-9)

SR B A5 AR R —/MB PR AR AR 2R AR L o 25 P B P RRAS [ X
SO AT R, LA BA AN FE N DRI 7t O ARy, anfs] 4-8 45 f
N, VFEERK . B RN RC Y 40 1% 30 580 30 ff5 . AEAN TR RO R ()
PR, T LE AR L) DX SR FHRORE 4R  RRA%, it 280 J3AN(E 4-9). 1 A1
R XUBR B R . 3E 1 XU B3 B EOE SN A 54,2310,

SA/D = (4.22)

Vo (h) = vio (hli] (4.23)
0

Hrfov,(h) RAEREERGE, vyt 10 KSR ENE, « /& Hellmann
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Figure 4-6 Software interaction for optimisation processes

10L,,

4-7 FREFIRE BV RS E

Figure 4-7 Setup of the computational domain of hull and keel

WAL IRFE I 7 3 /N B HERPPE——90% . MG AIRERE . T A
i AR BT T, KA AR N, T2 . Ak APRRIS
HRF T G AR RKBIN A BIERE . 2B AR 2 AR R R A T A, e
PLAG R ARAIE A 8 747 . % FE FI7E Intel Xeon Platinum 8160 ZbF 8348 #%) £, &
ANIKBN IR RBN I35 0 A TFERL 2 AN, AT R AR RO
YRR 10 F AR 1) = AR SR IGTE 07 B IR S LA ERE o Ak BT FE
MZHR BN 4-1.
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Figure 4-8 Setup of the computational domain of sail downwind (left) and upwind (right)
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Figure 4-9 Mesh settings
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®4-1 MBI EETHSHE

Table 4-1 Parameters settings in the optimisation process

A {IE1 A {IE1
FEini 20 k, 5
FE, 60 ks 1

k 1 A 0.02
ky 10 5 (51> DOF) 10%

432 FEBIESERSH

N T BAIE BO T A R, IATHET SN IEOA I FRTE ) S B 24A4R
PR HAT A HE e . B AR B Bk 2, FH LHS KA E 4 a0,
FORAEES BO J7ik v FERAEBUHE R o S8 )5 5 T IX B RAE A i 4 o) B 4o AR 9
FIFHDCACSK i 28 oK 1P EPIRES g . )5 A CFD i 537l 55 OB J7i5 A
BT E M R~ s, THEH AR B R R AN R B AR I 2
B E 7 eFX , eFY , eMX, eSUM, Ff DA SRl & 5 bt J7 25 1 P18 i ot 2

ZERUNER 42 s, EMHFERREARET, HBZITERMEIRS T2 1 “F
HRIRAS”, 1M BO A LAMEWA Jeie e reffivh TR W sk, RN, BO 3545 1)1
REMFREEEZ . Bk, BATAN BO J5idkn] UIAEM [F (K KREERCT 3R15 5 4
FrEREfTE, #HE 2, FTLUE SR & R FRAC TSRO .

R 4-2 ATTEEBETTE TR R EXT H

Table 4-2 Comparison of equilibrium states solved by offline methods and BO

Bt AL Tk Vs 6 A B eFEX  eFY eMX eSUM
RC 1.32 | R AT7iE 077 014 090 47.08 3% 6% 4% 13%
SPAN  1.32 BZJ7E 078 024 066 4500 10% 43% 36%  88%
TR 0.4 | MR ATV 115 0.87 1.43 3140 4% 4% 2% 10%
itr 70 BeTiE 043 041 731 2043 99% 24% 37%  160%
RC 0.70 | MR, AT7iE 167 259 0.78 5502 1% 3% 2% 6%
SPAN 4.92 S 132 3.02 143 56.05 61% 27% 32% 120%
TR 1 WK AT 1.70 1554 425 5480 5% 9% 4% 17%
itr 59 B4TTE 147 1659 463 3236 23% 2% 11%  36%
RC 0.77 | MR AF7ik 081 025 083 4743 0% 1% 9% 10%
SPAN  1.65 WA&TI 042 019 259 6254 167% 33% 187% 387%
TR 1 WK AT 136 162 146 3151 4% 8% 7% 19%
itr 72 B4JE 075 095 416 2411 15%  11% 19%  45%
RC 1.12 | WA AT7iE 091 014 049 6224 0% 8% 4% 12%
SPAN  1.30 B4J75  1.00 010 041 4500 47% 87% 131% 265%
TR 0.93 | WX Ak 124 129 167 2669 7% 3% 4% 14%
itr 78 B4JE 119 074 169 2796 11% 0% 74%  86%
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R 4-2 AT EEBET B TPEREREN HEER)

Table 4-2 Comparison of equilibrium states solved by offline methods and BO(continued)

— - —
it B Tk Vs 0 A B eFX  eFY eMX eSUM
SPAN 3.46 B4R 073 172 311 6128 107% 107% 200% 414%
TR 05 | WK AHiE 168 574 199 3039 0% 4% 2% 6%

itr 65 B 098 435 492 1558 3% 59% 33%  95%
RC 0.54 | R AT7ik 1.16 049 047 6297 0% 5% 2% 7%
SPAN 3.64 B yE 094 442 052 6265 108% 179% 122% 410%
TR 0.53 | R ATk 140 331 174 3300 1% 1% 1% 3%

itr 66 BT 159 1029 112 2942 74%  35%  219% 328%

¥E: JR=5m/s @ 150° , B X=12m/s @ 50°

N T IRAERER AR A R, A TR GT 6 DB AAE FH FRE
BARHE(E 24 Dicih S B EdE, BB & R AR B AL AT 46 B
BT 10 X BO SARHIE N E R AUE, A&l 4-10 7m0 A5 RERY], FIRIERAEE
RO R K 7 AR I R IR AR i BOF I 1 W8,

-8
FoANRER
HIRFES
80 ) * 1
46
g 60 i " N
P x 414 &
40 -
* =1 2
20 T . 0
AL BRI

B 4- 10 FHREBARERREAE
Figure 4-10 Comparison of statistics with and without introducing knowledge transfer
surrogate

Bl 4-11 BoR 7TATE 30 N EE MR R RICHTIR . Bl 4-12 BoR T =
ANIFZEL Spany RC 1 TR Sof 300 Jx T 2 RGPS B2 RS2 o I 3 X ) 1
DL — 2 SA . SRR, SPAN X Id B 1 RE S22 e B Y, X ST —
B, BB HWLRT DU I R RS B3RS B 2 3 ). 32 i R EAR IR 1), %%
K SPAN #H 4 M E /N RCo BRI [, BRAY TR v AR UF A H X, {H
EI e LA B O S 8h St . Ak g SRR, MRS E I Wit 2 4
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Figure 4-12 The influence of each two design variables on the optimisation objectives

2 43 HOBE T JSIAE R BT RAR B bR . SRR, FERH SR

67



T 17 FL3E de P8 ) JE N v S5 LA 7 i 7t

WERBUH 2R N, ARSI et J5ikea 1 RS E o A -7 & Duiiisg e
MM et 81 G RS AR NERES 2 1 1R

R 4-3 RABLHER

Table 4-3 Optimisation results
¥t RC(m)  SPAN(M) TR Kt v(m/s) o) A ) AC)

JR et 0.77 0.77 1.00 X 0.81 0.25 0.83 47.43
Uy 1.36 1.62 1.46 31.51

Pareto #1 0.81 5.15 0.51  JisiA 1.67 1.70 0.52 63.81
iR 1.98 15.23 2.48 28.45

Pareto #2 0.79 4.93 0.78 MK 1.65 3.09 0.95 48.02
U 2.11 17.55 2.64 33.00

Pareto #3 0.80 491 0.7 X 1.62 2.73 0.89 50.09
iR 2.13 17.62 2.44 32.11

4.4 KEING

ARG T N e LA RIBZ R G0 TR A 5 160 5 B0 LLTE AT
RS YU BE 7T AR BN S RS S AT PR, $8 T —Fh T DUH-fi7
PALFN KN IE RS BT NS BB Bt 77 v« 31K T8 H AR A B T 5 vk N A
RS SARECE AT, 3] T U R AR B A E

P NS GBI NN o TR/t O 87 PN o/ AN A 8% a7 o T NI 792 et s
PEREAL T FEUT TR CFD SRAEE “4ERE9¢HE” i, Jd@id 5] NAHE 1,
S TR BTG AR R E B R, R T RO R AR . T ELR
UESE SRR, BTt 1 7 v Re % i RO SE BN T NI e et S PE b e
BE IR M B O Sz A 3R 1) — 3 AR AT A 1 AT AT I i
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PUGE fE 1 REBE A 52 1M o2 2 5 SO0 N WUAR 10 T8 M 58 5 i BE ) 2 Bt A
BB L, A LA — AN AF T [ T v T AP RE TR O 2 AR B3 IE R g
MR FEE K AT IR BRI, AR B XA AT AWM BRI HF . AT
A e N R0 B8 ) (3R 5E B & MU T AR i R Rt I
RIS HOS T AW E A BE 2

REL 2 T T BK R SIS HIE R LIS T AU & R - 5
3T R B B K BRI TE NIRRT 14 B8 B T (9 A% 0o 1 T il
55 4 T R T AWUSHUE B AT T I RROK R T Rkl AFE S iS5
SRR K R 3G AR . EPERE . DASTE N WA A Sk M R 1Y) 2 e 7 T (9 2 e AT
THREMPF. 56 TRATHANFSLERIIT T ARG EAY.

5.2 #EkKBEFINEBEMYAS T AMARRIEECE 754

HAT, LT NWNRA T — Lo 00 #ii s A8 T HiiE e oA 2 e, a0
Submaran _ 2 2% 1 0] P 1 Z A& 2-7) 81 Datamaran FI7E 5 B 3h361E R4 (K
2-6). SR, XPMALIILEBAT I BRI~ G2k 1 aEfHEdt 7y, Frbl A2 —f
“NEHEE . SEERAR TS Dl T NG B RE ) R RE 2 SRS AR AR T Bl
DAL, 6 RE8 7L RS )45 2K fe /IR 0 & B &M XL . AR TGN
MR A SRR N S (H2 AR 1 A NI« 7o A v TR S5 A DG A,
I — 8T B 2 MR R A FIEOR o AHCH I B G N BT, 5
T NMRAGEFPE R W 5-1 Fis .

(1)) TR AT AR A,

I SCHR AT ARIEFE H SR P AET B AR DL R 7 ST, AT
HR AT LU I AL RAR I S T 25 A I A AL YR B B T AR, AT 3R R A 1 K
BN JIAMG7E J1FE IR o

il 5-1a, F IR Gunk sail)f&—FPE A KA LB, TEDI S Az
(%) 2 FH T v LR 2 g S X RS b b R L TR T DA e — AR a4 S
Ak 110 56 O R TRTAR R TR 2E o r RSE L 38 0 5 A AN 2 2R L IR TR S B ke e
A7 RS, XM ] b AR R AR AR & & T B AN RS AN
IR B AT BN I R G BB AN AE S BN TS S o ARSI AT T, Hh Qi)
WRE R T SCHEWLT AR, IF ELRAIR I 3 B& e 1 OS2 1 s, XA 75 Ui AE
T AT FEAG AR LSRR T LT 58 A 2k R Bh J1 22 ke« R, BERE i 5 122,
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Pi A= Pt B —FIARYE & B (1 2 S8 1 SRR AR I Bt AR« 52558k
RIS R KT R, BRI AR T, LIRS ECRIN 71 24 T
I, B 2 AR 45 B BRI AN B CARSAR B g s 75 ST DU MBI, SRS A
S ARAS RN B BRI AR, AR EE R T IR ST . X SWAREEA RS T
7 SR A MU, 2Bk JE & Dryden #2H 17— Fi 45 A= 7T 41 & WAL B8 ——The
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Table 5-1 Pros and Cons of the environment-adaptive mechanisms(continued)
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Figure 5-5 The effect of passive hydrofoils on the speed of autonomous sailboats
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Figure 5-7 The difference between positive and negative stability for monohulls and

catamarans
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Figure 5-8 Selected passive hydrofoil sailboat design concepts
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Figure 5-10 Comparison of different passive hydrofoil configurations
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Figure 5-11 3D view of the design scheme
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Table 5-2 Design parameters of the hydrofoil-assist autonomous sailboat
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Figure 5-15 Influence of passive hydrofoils on recovery moments and drag forces at different
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